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Take-Home Message

• In applications such as recommender systems, we often want to evaluate
the performance of a policy in an offline manner (OPE), without any
risky online interaction.

• When applying OPE to a real-world problem, we need to identify a ro-
bust estimator that works without significant hyperparameter tun-
ing.

• Identifying a robust estimator is extremely difficult with a typical exper-
imental procedure used in OPE research.

• We develop a novel evaluation protocol, Interpretable Evaluation for
Offline Evaluation, which can provide insights on the estimators’ ro-
bustness. (We also publicized a Python package, pyIEOE.)

• We apply our procedure in a real-world e-commerce platform and
provide a suitable estimator choice for the platform.

Off-Policy Evaluation

We consider a general contextual bandit setting.

• x ∈ X is a context vector (e.g., the user’s demographic profile)

• a ∈ A is an action (e.g., an item recommended from a finite set of items)

• r ∈ [0, rmax] is a reward (e.g., click indicator on the recommended item)

Decision making systems (e.g., recommender systems) are often con-
structed by a policy π : X → ∆(A), which chooses an action for each given
context to maximize the following policy value (i.e., expected reward).

V (π) := E(x,a,r)∼p(x)π(a|x)p(r|x,a)[r], (1)

where p(x) and p(r | x, a) are unknown provability distributions.

Here, we assume that we have a historical logged bandit data obtained by
a behavior policy πb: D := {(xi, ai, ri)}ni=1 ∼

∏n
i=1 p(x)πb(a | x)p(r | x, a),

where n is the data size.

off-policy evaluation (OPE) aims to evaluate the performance of a coun-
terfactual evaluation policy πe using only D as follows.

V̂ (πe;D, θ) ≈ V (πe), (2)

where V̂ is an OPE estimator, and θ is a set of estimator’s (pre-defined)
hyperparameters. Below, we show several examples of OPE estimators.

• IPW mitigates distribution shift between πb and πe using importance sam-
pling techniques as V̂IPW := En[ρ(xi, ai)ri], where En[·] is empirical aver-
age over D and ρ(xi, ai) := πe(xi | ai)/πb(xi, ai) is the importance weight.
This estimator is hyperparameter free but can suffer from large variance.

• SNIPW tries to address the variance of IPW by dividing V̂IPW by the
sum of importance weights as V̂SNIPW := En[ρ(xi, ai)ri]/En[ρ(xi, ai)]. This
estimator is also hyperparameter free.

• DR also attempts to tackle the variance of IPW by leveraging baseline
estimation q̂ and perform importance weighting only on its residual as
V̂DR := En[Ea∼πe(a|xi)[q̂(xi, a)] + ρ(xi, ai)(ri− q̂(xi, ai))]. To use DR, we have
to set hyperparameters of q̂.

• Switch-DR aims to further reduce variance of DR by avoiding impor-
tance weighting when ρ is large as V̂Switch−DR := En[Ea∼πe(a|x)[q̂(xi, a)] +

ρ(xi, ai)I{ρ(xi, ai) ≤ τ}(ri − q̂(xi, ai))]. This estimator have two hyperpa-
rameters, q̂ and τ .

Conventional Evaluation and Limitation

To evaluate and compare the performance of OPE estimators, we use the
following squared-error (SE) as a performance measure for any given
πe,D, V̂ , θ.

SE(V̂ ; πe, θ) := (V (πe)− V̂ (πe;D, θ))2, (3)

A typical evaluation procedure calculates mean-squared-error (MSE)
for a single given set of (πe,D, θ) to compare the performance of OPE
estimators. We argue that this typical procedure cannot evaluate the
estimators’ robustness to the configuration changes of (πe,D, θ).

Interpretable Evaluation for Offline Evaluation (IEOE)

To measure the estimators’ robustness, we first calculate SE on a vari-
ous set of configurations as shown in Algorithm 1. Moreover, we use

cumulative distribution function (CDF) to conduct a more informative
comparison of the estimators’ performance. CDF is a function defined as
FZ(z) := P(Z ≤ z), which is the probability that the estimator achieves a
performance better or equal to z. When we have Z = {z1, . . . , zm} (which
corresponds to SE), we can estimate CDF as follows.

F̂Z(z) :=
1

m

m∑
i=1

I{zi ≤ z}, (4)

We can visualize CDF for an interpretable comparison as we show in
the above figure. Using CDF, we also define evaluation metrics such as
area under the CDF curve AU-CDF(zmax) :=

∫ zmax

0
FZ(z)dz and conditional

value-at-risk CVaRα(Z) := E[Z | Z ≥ F−1
Z (α)], which will be useful for

identifying the robust OPE estimators.

Real World Application

We applied the IEOE procedure to provide a suitable estimator choice for
a real e-commerce platform. In the experiment, we found SNIPW clearly
outperforms other estimators across various configurations on the platform
data. The platform is now using SNIPW after the comprehensive accu-
racy and stability verification with IEOE.

Note: Larger value of AU-CDF and lower value of CVaR indicate that the estimator is more
accurate. We use zmax = 5.0× 10−5 and α = 0.7. The colors correspond to best and worst. The
value is divided by that of the best estimator.

Check out our camera-ready/arXiv paper for more detailed results! Also, feel free to ask
any questions.


