
Recommendation Using Reward Modelling and Sophisticated
Practical Compromises

Amine Benhalloum
Criteo

Paris, France

Guillaume Genthial
Criteo

Paris, France

David Rohde
Criteo

Paris, France

Flavian Vasile
Criteo

Paris, France

ABSTRACT
It might seem that algorithms that learn to optimize reward are
perfectly suited to the task of recommendation. We outline how
reward models might be applied to real world recommender sys-
tems and difficulties with applying them in practice. A pragmatic
compromise is described that has proven value in very large scale
recommendation tasks. We discuss trade-offs between direct reward
optimization and more scaleable and robust heuristic approaches.
We outlinewhat a rewardmodelling and optimizing approachmight
look like and discuss if this is practically feasible outlining possible
benefits and challenges. Limitations of the proxy approach and
challenges in the reward modelling approach are discussed.

ACM Reference Format:
Amine Benhalloum, Guillaume Genthial, David Rohde, and Flavian Vasile.
2018. Recommendation Using Reward Modelling and Sophisticated Practical
Compromises. In . ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/1122445.1122456

1 INTRODUCTION
A recommender system for computational advertising has a clear
well defined goal i.e. the recommender system is successful if it
increases the overall sales or profitability of the client. In short
the profit motive in computational advertising provides one of the
clearest performance metrics of any recommender system.

Given this clear objective we might imagine that by applying
machine learning techniques that optimize reward would be highly
applicable. There are two broad classes of machine learning meth-
ods that appear well suited to this task: model based approaches
e.g. [8] or alternatively inverse propensity score based approaches
[3].

This paper addresses the question:Why do large scale production
recommender systems ignore this elegant theory and instead optimize
proxies of performance?.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, ,
© 2018 Association for Computing Machinery.
https://doi.org/10.1145/1122445.1122456

2 A FAST RECOMMENDATION ENGINE
A user with context 𝑋 must have 𝐾 recommendations delivered to
them. We assume the following architecture:

A user representation is created using a deep network such that
𝜔 = 𝑓Ξ (𝑋). Here 𝜔 is a low dimensional dense representation of a
user with context 𝑋 . We then obtain the 𝐾 recommendations by
computing:

𝑎1, ..., 𝑎𝐾 = argsort[𝑓
𝚵
(𝑿)𝑇 𝜷]1:𝐾

here 𝛽 represents the item embeddings. There are two key advan-
tages to this architecture:

• By performing a fast approximate maximum inner product
search [1, 6] it is possible to solve the otherwise slow argsort
operation. This allows themethod to be applied at high speed
and high scale.

• It is possible to use deep learning methods in order to find
good solutions to 𝚵, 𝜷 .

We make a parenthetical remark here. This is just one type
of constrained decision rule, that has appealing properties in a
production setting. We could also consider decision rules that are
less constrained e.g. that optimize 𝑎1, ..., 𝑎𝐾 jointly and can exploit
(if they exist) virtuous combinations of recommendations.

3 OPTIMIZING FOR REWARD
In this paper we will assume that optimizing for short term reward
(or clicks) is our objective. In order to optimize for clicks a central
object is to quantify for a given context 𝑋 and a banner (or slate)
size 𝐾 what is the probability of obtaining a reward/click 𝑐 - that
is we require: 𝑃 (𝑐 |𝑎1:𝐾 ,𝑿). The model 𝑃 (𝑐 |𝑎1:𝐾 ,𝑿) can be trained
using logs of the recommender system either using a modeling
framework e.g. [8] or using inverse propensity score estimators
[3]. Both methods can be challenging especially in cases where the
recommendations 𝑎1:𝐾 have never (or rarely) been delivered histor-
ically on context𝑋 . Assuming we have obtained a 𝑃 (𝑐 |𝑎1:𝐾 ,𝑿) that
we trust we can then perform the following optimization problem
in 𝚵, 𝜷 space to find the appropriate decision rule

𝑈 (𝚵, 𝜷) =
∑
𝑛

𝑃 (𝑐 |𝑎1:𝐾 = argsort[𝑓
𝚵
(𝑿𝑛)𝑇 𝜷]1:𝐾) (1)

While elegant the above formulation has two key challenges
which means, that to the best of our knowledge, it has never been
applied in practice in large scale recommendation:

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

, , Benhalloum et al.

• Modelling 𝑃 (𝑐 |𝑎1:𝐾 ,𝑿) accurately is extremely difficult espe-
cially for actions that differ fromwhat was done previously. If
the old recommender system always recommended a phone
to a specific user it is not easy to model the impact of rec-
ommending shoes. - in these cases inverse propensity score
methods fail andmodel basedmethods are highly conditional
on assumptions.

• Optimizing an argsort efficiently a neglected problem. Meth-
ods for learning of the decision rule/policy in the literature
are often restricted to the case where 𝐾 = 1 in which case
the argsort can be replaced with an argmax which can be
approximated using a differentiable softmax allowing 𝚵, 𝜷
to be optimized using deep learning tools. The softmax itself
can be a computational bottleneck which can be (approxi-
mately) dealt with by using a sampled softmax adapted to
policy learning setting [5]. A partial solution to these issues
is present in [4] which replaces the argsort with a method
that optimizes an un-orderd set (within the top K). A more
direct solution to the problem could be obtained with a dif-
ferentiable argsort e.g. [2].

A parenthetical remark: Finding the optimal decision rule can be
achieved by solving for 𝚵, 𝜷 using optimisation methods e.g. deep
learning. It also may be unnecessary to do this optimisation if the
parametric form of the model has a form sufficiently similar to the
decision rule. For example if

𝑃 (𝑐 = 1|𝑎1, 𝑎2, 𝑋) =
exp(𝑔

𝛀
(𝑿)𝑇𝚿𝑎1) + exp(𝑔

𝛀
(𝑿)𝑇𝚿𝑎2)

𝜙 + exp(𝑔
𝛀
(𝑿)𝑇𝚿𝑎1) + exp(𝑔

𝛀
(𝑿)𝑇𝚿𝑎2)

,

then 𝑔
𝛀
(𝑋)𝑇𝚿𝑎 is a scalar “score” of action 𝑎 and the argsort is

optimal and can be achieved by setting the decision rule to 𝑓
𝚵
(𝑿) =

𝑔
𝛀
(𝑋) and 𝜷 = 𝚿. In other situations 𝚵, 𝜷 must be found using

numerical optimization.

4 A PRACTICAL ALTERNATIVE THAT
DELIVERS FAST RECOMMENDATIONS AT
SCALE

In our practical formulation we propose the following method. For
a given context 𝑿 we specify a desirable list of actions 𝑎∗1, ...𝑎

∗
𝐾
. We

produce this list not by looking at the logs of the recommender sys-
tem but at associations between items in the recommender system
logs. That is we assume that if a user with context views item 𝑎 it
suggests that we are likely to get a reward if we recommend item 𝑎

to that user.
In practice we do not explicitly define the optimal list 𝑎1:𝐾 for a

given 𝑿 rather we define a heuristic where we ‘sample positives’
for items that we consider good recommendations for user 𝑿 and
sample negatives for items that we consider bad for user 𝑿 .

If for each context 𝑿𝑛we define a positive actions 𝑎+𝑛,1..𝑅 and a
negative action 𝑎−

𝑛,1..𝑆 then the loss becomes:

L(𝚵, 𝜷) =
∑
𝑛

{
∑
𝑟

log𝜎{𝑓
𝚵
(𝑿𝑛)𝑇 𝜷𝑎+𝑛,𝑟 − 𝑓𝚵 (𝑿𝑛)

𝑇 𝜷𝑎−𝑛,𝑠 }

The characteristics of this procedure are:

a X position
phone 1 telephony 1
phone 2 telephony 2
phone 3 telephony 3
phone 4 telephony 4
phone 5 telephony 5
book 1 telephony 6
book 2 telephony 7
book 3 telephony 8
book 4 telephony 9
book 5 telephony 10
beer telephony 11
book 1 literature 1
book 2 literature 2

Table 1: Selected rows of what the proxy ranking method
produces - for each context X there is an optimal ranking
defined. In practice these rankings are defined by heuris-
tics that sample positives and negatives for each context.
Optimisation is used to minimize distance with an imple-
mentable ranker and the “optimal rank” for each context.

• A heuristic is used instead of explicit and direct use of the
reward logs, this negates the difficulty in obtaining reliable
rewards for actions rarely done by the production system
at the cost that the reward model is replaced with a proxy.
In simple terms the recommender system has previously
never recommended rice to a user with phones in their his-
tory - so the bandit feedback is silent on this action - in
contrast rice and phones infrequently co-occur so subject
to co-occurrence being a good proxy of reward it can be
estimated more easily.

• No softmax or other operations that scale with the catalogue
size are performed, this allows fast training even when the
catalogue sizes are vast. The trade-off with this approach is
that what is effectively optimised is the ‘edit distance’ of an
optimal action 𝑎∗1, ...𝑎

∗
𝐾
and the list delivered 𝑎1, ...𝑎𝐾 - this

is simplistic e.g. for some users there might be precisely 𝐾
good items so delivering precisely those items is important
for other users there may be many good recommendations
that have similar value if they were delivered in the top 𝐾 .
The simple edit distance cannot represent this complexity.

These compromises turn out to be extremely powerful in practice
- amore complete descriptionwith experiments on standard datasets
and A/B tests is given in [7].

5 EXAMPLE AND DISCUSSION
Let’s step through a toy example. Imagine that we have a catalogue
of 11 items, Five of these items are phones which we denote phone
1, phone 2,..., phone 5 and five of these items are books that we
denote book 1, book 2 ,..., book five the final item is beer.

We will observe a context 𝑿 that has one of three states: inter-
ested in telephony, literature or drinks. We want to deliver recom-
mendations in slates or banners of size 2. Finally we must adhere to
engineering constraints we cannot do arbitrary recommendations
exhaustively searching the catalogue.

Recommendation Using Reward Modelling and Sophisticated Practical Compromises , ,

𝑃 (𝑐 = 1|𝑎1, 𝑎2, 𝑋) 𝑎1 𝑎2 X
0.20 phone 1 phone 2 telephony
0.19 phone 2 phone 3 telephony
0.18 phone 4 phone 5 telephony
0.06 book 1 phone 2 telephony
0.01 book 1 book 2 telephony
0.01 phone 1 phone 2 drinks
0.10 beer phone 2 drinks

Table 2: Selected rows of what a rewardmodel might predict
in our hypothetical example using slates of size 2.

In order to pursue the proxy approach for each of our contexts
we use whatever signals are available to us to produce an idealised
itemized list. For example for a user interested in literature we may
use co-occurrences of items (a strong signal in many contexts, but
one that is only a proxy to reward) and we might find that the order
of co-viewing X=literature and each item is book 1, book 2, book 3,
book 4, book 5, phone 1, phone 2, phone 3, phone 4, phone 5. This
ordering is not usually defined explicitly but rather it is defined
by a heuristic definition of how to sample positive and negative
examples. While the heuristic may be quite good, it is not easy to
make fine judgements about different proposals for creating this
ordering and it is necessary to use extensive A/B testing.

Once an ordering for each context is defined we optimize a de-
cision rule that satisfies engineering constraints by minimizing a
distance between the delivered list of recommendations and the
preferred list of recommendations. We use optimization techniques
to deliver the best list by this criterion. Fortunately optimization
that minimizes the distance between two ordered lists can be per-
formed using mini-batches of the lists resulting in fast learning
algorithms for large catalogues this is in practice a massive practical
advantage.

Now consider a full decision theoretic approach. We need to
estimate 𝑃 (𝑐 = 1|𝑎1, 𝑎2, 𝑋) - this in general might be a very difficult
problem although in a small problem if we had a random logging
policy that is if we have sufficient historical data including historical
data of preposterous recommendations such as recommending beer
and book 1 to a user interested in telephony; then we can see how
such an estimation might be possible. We should immediately note
that this is a far more complex structure than the proxy approach
has used (which had a single list per context). In this scenario we
have for every context a two item list mapping to a reward. Table 1
and Table 2 illustrate the two formulations. Table 2 is also simplified
by the fact that the slate size is 2 here in general it would be much
larger.

The reward model as presented in Table 2 makes it clear that
the cost incurred for doing a sub-optimal ranking is uneven. For
example if the context is telephony then the optimal ranking might
be phone 1, phone 2, phone 3, phone 4, phone 5, book 1, book 2,
book 3, book 4, book 5, beer. The reward model might agree that a
slate consisting of phone 1 and phone 2 is optimal - but it might also
note that a slate consisting of phone 4 and phone 5 still has almost
the same performance. This nuance is lost when we compute a
ranking loss with a recommender system that produces a list for
telephony starting with items phone 4 and phone 5.

Once the reward model is estimated we must find the decision
rule that will deliver optimal recommendations. This represents
a further optimization problem that we argue current state of the
art methods do not quite handle. The key complexity is the argsort
in Equation 1 which we need to be able to differentiate through
to efficiently optimize we also need this to be scaleable for large
catalogues. We present current state of the art methods for related
problems and suggest a solution for finding a differentiable argsort
leave scaling this to large catalogues to future work.

The policy optimization for exponential models (POEM) [9]
solves this problem for cases where the slate/banner is of size 1
reducing the problem to an argmax which can be approximated
using a softmax. In this formulation there is only one item in the
slate so we have 𝑃 (𝑐 |𝑎,𝑋) and the decision rule is a categorical over
the action space which can be viewed as a “probability” 𝜋 (𝑎 |𝑋). The
optimal solution places all the probability on the optimal action for
a given context. They propose using the inverse propesnity score
(Horwitz-Thompson) estimator for 𝑃 (𝑐 |𝑎,𝑋).

A proposal to go beyond this single item slate formulation was
outlined in [4] using the concept of a Top K recommender. Here
they use the same formulation of the decision rule over a single
action i.e. 𝜋 (𝑎 |𝑋) but modify the optimization procedure so that
items in the top K do not find the optimal value at 1. They also
propose scaling to large catalogues using a sampled softmax and
the reinforce algorithm again combined with a Horwitz-Thompson
style estimator for 𝑃 (𝑐 |𝑎,𝑋).

The approach of [4] while interesting doesn’t quite handle our
use case of handling ordered lists of size 2 (or more). It rather works
with sets and in fact continues to use a decision rule designed for a
single item slate setting 𝜋 (𝑎 |𝑋).

We suggest that a simple alternative to handling this is to instead
use 𝜋 (𝑎1, 𝑎2 |𝑋, 𝜷,𝚵) =

exp(𝝀𝑎1)
𝑍

exp(𝝀𝑎2)
𝑍−exp(𝝀𝑎1)

where 𝑍 =
∑
𝑝 exp𝝀𝑝 and 𝝀𝑎 = 𝑓

𝚵
(𝑿𝑛)𝑇 𝜷𝑎 is a personalized score

of recommendation 𝑎 on context 𝑿 .
To give intuition imagine that for context 𝑋 ′ the best recommen-

dation will be item 1 and item 2 and item 3 and item 4 are not to be
included but the order does not matter. In this case if 𝝀1 is much
greater than 𝝀2 and 𝝀2 is much greater than 𝝀3 and 𝝀4. Then we
arrive at 𝜋 (𝑎1 = 1, 𝑎2 = 2|𝑋) → 1. The relative positions of item 3
and item 4 scores’ is not important. This differs markedly from the
approach in [4] which uses a uni-action 𝜋 (𝑎 |𝑋) and would try to
share probability between 𝜋 (𝑎 = 1|𝑋) and 𝜋 (𝑎 = 2|𝑋). Although
unfortunately the calculation 𝑍 =

∑
𝑝 exp𝝀𝑝 scales poorly with

large catalogues.

6 CONCLUSION
We have discussed an idealised machine learning approach to op-
timizing reward of a recommender system and outlined the chal-
lenges that would occur when deploying such a system in practice.
We also outlined a practical approach that has been proven in a
production environment. The differences amount to using heuris-
tics in place of an estimate of the true reward and the replacement
of an argsort with a ranking loss. This discussion raises an obvious
question: Can the practical limitations of the reward approach be
overcome and further improve performance?

, , Benhalloum et al.

The key practical strengths of the heuristic approach are: noth-
ing scales as per catalogue size and problems caused by uneven
estimation of rewards is bypassed by the use of the proxy.

The key practical issues with the heuristic approach is that there
is no clear way to establish how positive and negative recommen-
dations should be sampled, this must be done experimentally with
the ultimate arbiter being A/B testing. This approach can also suf-
fer from Goodhart’s law: “Any observed statistical regularity will
tend to collapse once pressure is placed upon it for control purposes.”
Furthermore the ranking loss is insensitive to the variable cost of
mis-ranking.

By contrasting the two approacheswe hope to engage researchers
and engineers on grappling with this difference between theory
and practice.

REFERENCES
[1] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam

Koenigstein, Nir Nice, and Ulrich Paquet. 2014. Speeding up the xbox recommender
system using a euclidean transformation for inner-product spaces. In Proceedings
of the 8th ACM Conference on Recommender systems. 257–264.

[2] Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. 2020. Fast
differentiable sorting and ranking. In International Conference on Machine Learning.
PMLR, 950–959.

[3] Denis Charles, Max Chickering, and Patrice Simard. 2013. Counterfactual reason-
ing and learning systems: The example of computational advertising. Journal of
Machine Learning Research 14 (2013).

[4] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H
Chi. 2019. Top-k off-policy correction for a REINFORCE recommender system. In
Proceedings of the Twelfth ACM International Conference on Web Search and Data
Mining. 456–464.

[5] Thorsten Joachims, Adith Swaminathan, andMaarten de Rijke. 2018. Deep learning
with logged bandit feedback. In International Conference on Learning Representa-
tions.

[6] Omid Keivani, Kaushik Sinha, and Parikshit Ram. 2018. Improved maximum inner
product search with better theoretical guarantee using randomized partition trees.
Machine Learning 107, 6 (2018), 1069–1094.

[7] Olivier Koch, Amine Benhalloum, Guillaume Genthial, Denis Kuzin, and Dmitry
Parfenchik. 2021. Scalable representation learning and retrieval for display adver-
tising. arXiv preprint arXiv:2101.00870 (2021).

[8] Otmane Sakhi, Stephen Bonner, David Rohde, and Flavian Vasile. 2020. BLOB: A
Probabilistic Model for Recommendation that Combines Organic and Bandit Sig-
nals. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 783–793.

[9] Adith Swaminathan and Thorsten Joachims. 2015. Batch learning from logged
bandit feedback through counterfactual risk minimization. The Journal of Machine
Learning Research 16, 1 (2015), 1731–1755.

	Abstract
	1 Introduction
	2 A fast recommendation engine
	3 Optimizing for Reward
	4 A Practical Alternative That Delivers Fast Recommendations at Scale
	5 Example and Discussion
	6 Conclusion
	References

