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ABSTRACT

Off-policy Evaluation (OPE), or offline evaluation in general, eval-
uates the performance of hypothetical policies leveraging only
offline log data. It is particularly useful in applications where the
online interaction involves high stakes and expensive setting such
as precision medicine and recommender systems. Since many OPE
estimators have been proposed and some of them have hyperparam-
eters to be tuned, there is an emerging challenge for practitioners
to select and tune OPE estimators for their specific application. Un-
fortunately, identifying a reliable estimator from results reported in
research papers is often difficult because the current experimental
procedure evaluates and compares the estimators’ accuracy on a nar-
row set of hyperparameters and evaluation policies. Therefore, we
cannot know which estimator is safe and reliable to use in general
practice. In this work, we develop Interpretable Evaluation for Of-
fline Evaluation (IEOE), an experimental procedure to evaluate OPE
estimators’ sensitivity to the choice of hyperparameters and possi-
ble changes in evaluation policies in an interpretable manner. We
also build open-source Python software, pyIEOE, to streamline the
evaluation with the IEOE protocol. With this software, researchers
can use IEOE to compare different OPE estimators in their research,
and practitioners can select an appropriate estimator for the given
practical situation. Then, using the IEOE procedure, we perform
extensive re-evaluation of a wide variety of existing estimators on
public datasets. We show that, surprisingly, simple estimators that
have fewer hyperparameters are more reliable than other advanced
estimators because advanced estimators need environment specific
hyperparameter tuning to perform well. Finally, we apply IEOE to
real-world e-commerce platform data and demonstrate how to use
our protocol in practice.
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1 INTRODUCTION

Interactive bandit and reinforcement learning algorithms have been
used to optimize decision making in many real-life scenarios such as
precision medicine, recommender systems, advertising, etc. We of-
ten use these algorithms to maximize the expected reward, but they
also produce log data valuable for evaluating and redesigning future
decision making. For example, the logs of a news recommender sys-
tem record which news article was presented and whether the user
read it, giving the decision maker a chance to make its recommen-
dation more relevant. Exploiting log data is, however, more difficult
than conventional supervised machine learning as the result is only
observed for the action chosen by the algorithm but not for all
the other actions the system could have taken. The logs are also
biased, as the logs over-represent the actions favored by the past
algorithm. Online experiment or A/B test is a potential solution
to this issue. It compares the performance of counterfactual algo-
rithms in an online environment, enabling unbiased evaluations
and comparisons. However, A/B testing counterfactual algorithms
is often difficult, since deploying a new policy to a real environment
is time-consuming and may damage user satisfaction [6].

This motivates us to study Off-policy Evaluation (OPE), which
aims to estimate the performance of an evaluation policy using
only log data collected by a behavior policy. Such an evaluation
allows us to compare the performance of candidate policies safely
and helps us decide which policy should be deployed in the field.
This alternative offline evaluation approach thus has the potential
to overcome the above issues with the online A/B test approach.

With growing interest in offline evaluation, the research com-
munity has produced a number of estimators, including Direct
Method (DM) [2], Inverse Probability Weighting (IPW) [14, 17],
Self-Normalized IPW (SNIPW) [21], Doubly Robust (DR) [4], Switch-
DR [25], and Doubly Robust with Optimistic Shrinkage (DRos) [18].

One emerging challenge with this trend is that there is a need
for practitioners to select and tune appropriate hyperparameters
for OPE estimators for their specific application [19, 24]. For ex-
ample, DM first estimates the expected reward function using an
arbitrary machine learning method, then uses its estimate for OPE.
Therefore, one has to identify a good machine learning method to
estimate the expected reward before the offline evaluation phase.
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Figure 1: An example output of the proposed evaluation pro-
cedure for offline evaluation

Identifying the appropriate machine learning method for DM is
difficult, because its accuracy cannot be easily quantified from ban-
dit data [7]. Sophisticated estimators such as Switch-DR [25] and
DRos [18] show improved offline evaluation performances in some
experiments. However, these estimators have a larger number of
hyperparameters to be tuned compared to the baseline estimators.
A difficulty here is that the estimation accuracy of offline evalua-
tion methods is highly sensitive to the choice of hyperparameters,
as suggested in empirical studies [16, 24]. When we rely on of-
fline evaluation in real-world applications, it is desirable to use
an estimator that achieves accurate evaluations without requiring
significant hyperparameter tuning. An estimator of this type is
preferable, because tuning hyperparameters of OPE estimators (or
offline evaluation metrics) with only logged bandit data is challeng-
ing in nature. Therefore, we often want to know which estimator
provides an accurate and reliable offline evaluation without any envi-
ronment specific hyperparameter tuning.

Current dominant evaluation procedures. Unfortunately, cur-
rent evaluation procedures for offline evaluation used in OPE re-
search cannot address the above question. Almost all OPE papers
evaluate the estimator’s performance for a single given hyperparam-
eter and an arbitrary evaluation policy [4, 5, 10-12, 16, 18, 20, 23, 25].
Even though it is common to iterate some trials with different ran-
dom seeds to provide an estimate of the performance, it cannot
evaluate the estimators’ sensitivity to hyperparameter choices or
the changes in evaluation policies, which is critical in real-world
scenarios. The estimator’s performance from this common pro-
cedure does not properly account for the uncertainty in offline
evaluation performance, as the reported performance measure is a
single random variable drawn from the distribution over the esti-
mator’s performance. Consequently, choosing an appropriate OPE
method is difficult, as their sensitivity to hyperparameter choices
or the changes in evaluation policies are not quantified in existing
experiments.

Contributions. Motivated towards the reliable use of offline
evaluation in practice, we develop an interpretable and scalable

evaluation procedure for offline evaluation methods that quanti-
fies their sensitivity to the choice of hyperparameters and possible
changes in evaluation policies. Our evaluation procedure compares
several offline evaluation methods as depicted in Figure 1. This
figure compares the offline evaluation performance of IPW and
DM by illustrating their accuracy distributions as we vary their
hyperparameters, evaluation policies, and random seeds. The x-
axis is the squared error in offline evaluation; a lower value in-
dicates that an estimator is more accurate. The figure is visually
interpretable, and in this case, we are confident that IPW is better,
having lower squared errors with high probability, being robust
to the changes in configurations, and being more accurate even in
the worst case. In addition to developing the evaluation procedure,
we have implemented open-source Python software, pyIEOE, so
that researchers can easily implement our procedure in their exper-
iments, and practitioners can identify the best estimator for their
specific environment.

Using our procedure and software, we re-evaluate a wide variety
of existing OPE estimators on several classification datasets and
Open Bandit Dataset [16]. Through the extensive experiment, we
derive the following surprising result:

Empirical Result 1 (Benchmark Experiment). Our
procedure suggests that IPW is the best in achieving

reliable offline evaluation in the sense that it performs

stably across a range of different experimental con-
figurations. In contrast, popular estimators such as

DR and Switch-DR are difficult to use in practice, as

their performances depend heavily on hyperparame-
ter choices.

Empirical Results 1 shows that advanced estimators (such as DR,
Switch-DR, and DRos) outperform simple estimators (such as [IPW
and SNIPW) in only a narrow set of experimental conditions.

Finally, as a proof of concept, we use our procedure to select
the best estimator for the offline evaluation of coupon treatment
policies on a real-world e-commerce platform. The platform uses
OPE to improve its coupon optimization policy safely without im-
plementing A/B tests. However, the platform’s data scientists do
not know which offline evaluation method is appropriate for their
setting. We apply our procedure to provide an appropriate estimator
choice for the platform and obtain the following conclusion:

Empirical Result 2 (Real-World Application). Our
procedure suggests that SNIPW is the best choice for

the platform because of its stable evaluation perfor-
mance on the platform data.

After reliable empirical verification, the platform now uses SNIPW
for offline evaluation to continuously improve the performance of
its coupon optimization policy. This real-world application demon-
strates how to use our procedure to reduce uncertainty and risk
that we face in real-world offline evaluation.

2 OFF-POLICY EVALUATION
2.1 Setup

We consider a general contextual bandit setting. Let r € [0, rmax]
denote a reward or outcome variable (e.g., whether a coupon as-
signment as an action results in an increase in revenue). We let



x € X be a context vector (e.g., the user’s demographic profile)
that the decision maker observes when picking an action. Rewards
and contexts are sampled from unknown probability distributions
p(r | x,a) and p(x), respectively. Let A be a finite set of discrete
actions. We call a function 7 : X — A(A) a policy. It maps each
context x € X into a distribution over actions, where 7 (a | x) is
the probability of taking action a given context vector x.

Let D := {(xi,ai,ri)}]_, be a historical logged bandit feedback
with n observations. g; is a discrete variable indicating which action
in A is chosen for individual i. r; and x; denote the reward and the
context observed for individual i, respectively. We assume that a
logged bandit feedback dataset is generated by a behavior policy
as follows:

n
(G anr¥iy ~ | | pGms(ai | x)p(ri | xi, @),
i=1
where each context-action-reward triplet is sampled independently
from the identical product distribution. Then, for a function f(x, a, r),
we use B, [f] :=n"! 2 (xpair) e f (i, ai, i) to denote its empir-
ical expectation over n observations in D. We also use q(x, a) :=
Er~p(rix,a [ | X, a] to denote the mean reward function for a given
context and action.
In OPE, we are interested in using historical logged bandit data
to estimate the following policy value of a given evaluation policy
7e which might be different from 7,:

V(me) = E(x,ar)~p(x) 7 (alx)p(rix.a) [T]-

Estimating V' (7.) before deploying 7, in an online environment is
useful in practice, because 7, may perform poorly. Additionally, this
makes it possible to select an evaluation policy that maximizes the
policy value by comparing their estimated performances without
incurring additional implementation cost.

2.2 Existing OPE Estimators

Given the policy value as the estimand, the goal of researchers is to
propose an accurate estimator. OPE estimator V estimates the policy
value of an arbitrary evaluation policy as V() = V(re; D, 0),
where O is an available logged bandit feedback dataset, and 0 is a
set of pre-defined hyperparameters of V.

Below, we summarize the definitions and properties of several
existing OPE methods. We also summarize their built-in hyperpa-
rameters in Table 1.

Direct Method (DM). DM [2] first learns a supervised machine
learning method, such as random forest, ridge regression, and gra-
dient boosting, to estimate the mean reward function q. DM then
estimates the policy value as

Vom (7e; D, §) = En[Egr, (alx) [4(xi, @)]1],

where §(x, a) is the estimated mean reward function. If §(x, a) is a
good approximation to the mean reward function, this estimator
accurately estimates the policy value of the evaluation policy. If
4(x, a) fails to approximate the mean reward function well, however,
the final estimator is no longer consistent.

Inverse Probability Weighting (IPW). To alleviate the issue with
DM, researchers often use IPW [14, 17]. IPW re-weights the rewards

by the ratio of the evaluation policy and behavior policy, as

Vipw (773 D) = En[p(xi, ai)ril,

where p(x,a) = 7me(a | x)/np(a | x) is called the importance
weight. When the behavior policy is known, IPW is unbiased and
consistent for the policy value. However, it can have high variance,
especially when the evaluation policy deviates significantly from
the behavior policy.

Doubly Robust (DR). DR [4] combines DM and IPW as

VbR (e; D, §) = En[Bgr, (alx) [d(xis @)1 + pCxi, ai) (ri — G(xi, ai))].

DR uses the estimated mean reward function as a control variate
to decrease the variance of IPW. It is also doubly robust in that it
is consistent to the policy value if either the importance weight or
the mean reward estimator is accurate.

Self-Normalized Estimators. SNIPW is an approach to address the
variance issue with the original IPW. It estimates the policy value
by dividing the sum of weighted rewards by the sum of importance
weights as:

En[p(xi, ai)ri]
Enlp(xiai)]

SNIPW is more stable than IPW, because policy value estimated by
SNIPW is bounded in the support of rewards and its conditional
variance given action and context is bounded by the conditional
variance of the rewards [9]. IPW does not have these properties.
We can define Self-Normalized Doubly Robust (SNDR) in a similar
manner as follows.

Vantpw (7e; D) =

VsNDR (7e; D, §)
p(xi, a;)
Enlp(xi, ai)]

Switch Estimator. The DR estimator can still be subject to the vari-
ance issue, particularly when the importance weights are large due
to low overlap between behavior and evaluation policies. Switch-
DR [25] aims to further reduce variance by using DM where impor-
tance weights are large:

=En |Eg-r, (ax) [4(xi, @)] + (ri = q(xi,a1)) | -

VswitchpR (7e: D. 4, 7)
= Bn [Eger, (alx) [4(xis @)1 + p(xi, ai) (ri — G(xi, ai)){p(xi, a;) < 1},

where I{-} is the indicator function and r > 0 is a hyperparame-
ter. Switch-DR interpolates between DM and DR. When 7 = 0, it
coincides with DM, while 7 — oo yields DR.

Doubly Robust with Optimistic Shrinkage (DRos). Su et al. [18]
proposes DRos based on a new weight function py : X X A — Ry
that directly minimizes sharp bounds on the mean-squared-error
(MSE) of the resulting estimator. DRos is defined as

VDROS(”E; D, ‘i A)

= Enl[Ba~rn, (alx) [4(xi @)] + po(xi, aiz 1) (ri — §(xi, ai))],
where A > 0 is a hyperparameter and p, is defined as po(x, a; 1) =
mp(x, a). When A = 0, py(x,a;1) = 0 leading to the stan-
dard DM. On the other hand, as 1 — o0, po(x,a;1) = p(x,a)
leading to the original DR.



Table 1: Hyperparameters of the OPE estimators

OPE Estimators ‘ Hyperparameters
Direct Method q.K
Inverse Probability Weighting (IPW) [14, 17] (%)
Self-Normalized IPW [21] (7t)
Doubly Robust (DR) [4] 4. K, (7)
Self-Normalized DR 4, K, (#)
Switch-DR [25] 4, 7, K, (7tp)
DRos [18] 4, A, K, (%)

Note: G is an estimator for the mean reward function, g, constructed
by an arbitrary machine learning method. K is the number of folds in
the cross-fitting procedure. 7 is an estimated behavior policy. This is
unnecessary when we know the true behavior policy, and thus it is in
parentheses. 7 and A are non-negative hyperparameters for defining
the corresponding estimators.

Cross-Fitting Procedure. To obtain a reward estimator, §, we some-
times use the technique called cross-fitting to avoid the substantial
bias that might arise due to over-fitting [13]. The cross-fitting pro-
cedure constructs a model-dependent estimator such as DM and
DR as follows:

(1) Take a K-fold random partition (Dk)f:1 of size n of logged
bandit feedback dataset 9 such that the size of each fold
is ng = n/K. Also, for each k = 1,2,...K, we define Z)z =
{1,...,n}\Dx.

(2) Foreachk =1,2,...K, construct reward estimators {G }Ik(:1
using the subset of data ;..

(3) Given {qk}le and model-dependent estimator V, estimate
the policy value by K~} Zle V (7te; D, )

3 EVALUATING OFFLINE EVALUATION

We have so far seen that the OPE community has developed a vari-
ety of offline evaluation methods. What every OPE research paper
should do in their experiments is to compare the performance (esti-
mation accuracy) of the existing estimators and report the results.
A typical and dominant method to do so is to use the following
mean-squared-error (MSE) as the estimator’s performance measure:

MSE(V; 7, 8) = Ep [(V(ﬁe) - V(n’e;D;H))z] ,

where V(1) is the policy value and V is an estimator to be evalu-
ated. MSE measures the squared distance between the policy value
and its estimated value, and thus a lower value means a more ac-
curate offline evaluation by V. Researchers often calculate MSE of
each estimator several times with different random seeds and report
its mean and standard deviation for performance comparisons.
The issue with this procedure is that most of the estimators
have some hyperparameters that should be chosen properly by
analysts before the estimation process. Moreover, the estimation
performance can vary when evaluating different evaluation policies
(especially in finite sample cases). However, the current dominant
procedure for evaluating offline evaluation uses only one set of hy-
perparameters and an arbitrary evaluation policy for each estimator,

and then discusses the results derived [1, 5, 20, 23, 25].! This type
of simplified experimental procedure does not accurately capture
the uncertainty in the performance of offline evaluation methods. It
cannot evaluate the sensitivity to hyperparameter choices and eval-
uation policy settings, as the score reported is for a single arbitrary
set of hyperparameters and for a single evaluation policy.

What is often critical in offline evaluation practices is to identify
an estimator that performs well for a variety of evaluation poli-
cies without problem-specific hyperparameter tuning. An estimator
robust to the changes in such configurations is usable reliably in
uncertain real-life scenarios. In contrast, an estimator which per-
forms well only on a narrow set of hyperparameters and evaluation
policies always entails a higher risk of failure in its particular appli-
cation. Therefore, in the next section, we develop an experimental
procedure that can evaluate the estimators’ sensitivity to experimen-
tal configurations, leading to informative estimator comparisons in
OPE research and a reliable estimator selection in practice.

4 INTERPRETABLE EVALUATION FOR
OFFLINE EVALUATION

In this section, we outline our experimental protocol, Interpretable
Evaluation for Offline Evaluation (IEOE).

As we have discussed, the expected value of performance (e.g.,
MSE) alone is insufficient to properly evaluate an estimator, as it dis-
cards information about its sensitivity to hyperparameter choices
and changes in evaluation policies. We can conduct a more in-
formative experiment by estimating the cumulative distribution
function (CDF) of an estimator’s performance. The CDF is the func-
tion, Fz : R — [0, 1], where Z is a random variable representing
the performance metric of an estimator (e.g., the squared error).?
F7(z) maps a performance measure z to the probability that the
estimator achieves a performance better or equal to that score, i.e.,
Fz(z) =P(Z < 2).

When we have size m of realizations of Z, i.e., Z = {z1,...,Zm},
we can estimate the CDF by

Ez(z) = - Y Wz < 2} 1)
i=1

Using the CDF for evaluating offline evaluation methods allows
researchers to compare different estimators with respect to their ro-
bustness to the varying configurations. Specifically, we can use the
CDF to evaluate offline evaluation methods by examining the CDF
of the estimators’ performance visually or computing some summa-
rization scores of the CDF as the estimators’ performance measure.
The visual investigation by plotting the CDF allows for a quick
interpretation of a range of estimator’s performance. Moreover, a
numerical evaluation can summarize an estimator’s performance.
For example, we can score an estimator by the area under the CDF
curve (AU-CDF):

Zmax
AU-CDF(zpax) = / Fz(2)dz.
0

IThis is why we use MSE (V; 7z, 0) to denote MSE so as to highlight that it depends
on the estimator’s hyperparameters 6 and an evaluation policy 7ze.

%In the following, without loss of generality, we assume that a lower value of Z means
more accurate OPE.



Another possible summarization score is Conditional Value-at-Risk
(CVaR) which computes the expected value of a random variable
above given probability a:

CVaRy(Z) =E[Z | Z > F,;'(a)],

where FEI (@) := argmin{z | Fz(z) > a} is the inverse of the CDF.

When using CVaR, ezstimators are evaluated based on the average
performance of the bottom 100 X (1 — &) percent of trials. For
example, CVaRy 7(Z) is the average performance of the worst 30%
of trials. In addition to AU-CDF and CVaR, we can use the standard
deviation (Std), E[(Z - E[Z])?] 1/2 and some other moments such
as skewness of F(z) as summarization scores.

We present the IEOE procedure in Algorithm 1. To evaluate the
estimation performance of V, we need to specify a candidate set
of hyperparameters ©, a set of evaluation policies I, a hyperpa-
rameter sampling function ¢, and a set of random seeds S. Then,
for every seed s € S, the algorithm samples a set of hyperparam-
eters § € © based on sampler ¢. We can use a hyperparameter
tuning method for OPE estimators such as the one used in [25] as ¢.
When we cannot implement such a hyperparameter tuning method
for OPE due to its implementation cost or risk of over-fitting, we
can use the uniform distribution as ¢. Next, the IEOE algorithm
samples an evaluation policy 7, € II, from the discrete uniform
distribution. Moreover, it replicates the data generating process us-
ing the bootstrap sampling from D. A bootstrapped logged bandit
feedback dataset is defined as D* := {(x], a}, r]) }|_; where each tu-
ple (x},aj,r}) is sampled independently from D with replacement.
Finally, for sampled tuple (7., D*, 0), it computes a performance
measure (e.g., the squared error). After applying Algorithm 1 to sev-
eral estimators and obtaining the empirical CDF of their evaluation
performances, we can visualize them or compute some summariza-
tion scores (e.g., AU-CDF, CVaR, or Std) to discuss their robustness
and to decide which estimator to use for a specific environment.

Algorithm 1 Interpretable Evaluation for Offline Evaluation

Input: logged bandit feedback 9, an estimator to be evaluated V, a
candidate set of hyperparameters ©, a set of evaluation policies
I, a hyperparameter sampler ¢ (default: uniform distribution),
a set of random seeds S
Output: empirical CDF, Fy, of the squared error (SE)
. Z<0
2. fors € S do
3: 0 — $(0;s)
7e < Unif (I¢; s)
D* « Bootstrap(D;s)
7z — SE(V; D*, 1e, 0)
7: Z—ZuU{}
8: end for
9: Estimate Fz using Z (by Eq. (1))

A

5 BENCHMARK EXPERIMENTS

In this section, we perform the re-evaluation of a wide variety
of OPE estimators using our protocol and software.> We conduct
experiments on three classification datasets, OptDigits, PenDigits,
and SatImage provided in the UCI repository [3]. Please refer to
Appendix A.1 for a summary of the datasets.

5.1 Setup

Following previous studies [4, 5, 8, 25], we transform classification
data to contextual bandit feedback data. In a classification dataset
{(xi, a;) }I |, we have feature vector x; € X and ground-truth label
a; € A. Here, we regard a machine learning classifier 7z,; : X —
A(A) as a deterministic policy that chooses class label a; € A as
an action from feature vector x;. We then define reward variable
ri == I{m(x;) = a;}. Since the original classifier is deterministic,
we make it stochastic by combining 4., and the uniform random
policy 7y, as m(a | x) = ange;(x) + (1 — a)my,(a) where a € [0, 1]
is an additional experimental setting.

To apply IEOE to classification data, we first randomly split
each dataset into train Dy and test Die = {(x;, ai)};’:ll sets. Then,
we train a classifier on Dy, and use it to construct a behavior
policy 7, and a class of evaluation policies II,. By running behavior
policy 7, on Dye, we transform Dy to logged bandit feedback
data Dey = {(xi, aﬁ’, ri = ]I{aﬁ.’ = ai})}l'.’;l, where ag’ ~ 1y, is the
action sampled by the behavior policy. By applying the following
procedure, we compute the squared error (SE) of V for each iteration
in Algorithm 1:

(1) Estimate the policy value V (1q; D*, 0) for tuple (7., D*, 0)

sampled in the algorithm.
(2) Estimate V (7,) using the fully observed rewards in Dy, i.e.,
V(re; Dre) = En [Egewr, (a)xy) [H{a® = ai}]].

(3) Compare the off-policy estimate V (1; D¥, 8) with its ground-
truth V(7e; Dre) using SE as a performance measure of v,
ie., SE(V;D*, e, 0) = (V(e; D*, 0) — V(1e; Die)).

5.2 Estimators and Hyperparameters

We use our protocol and re-evaluate DM, IPW, SNIPW, DR, SNDR,
Switch-DR, and DRos in an interpretable manner.

Here, we run the experiments under two different settings. First,
we test the case where the true behavior policy r, is available. In
this setting, IPW and SNIPW are hyperparameter-free while the
other estimators need to be tested for robustness to the choice
of the pre-defined hyperparameters such as §. Next, we test the
OPE estimators with the estimated behavior policy 7, where we
assume that the true behavior policy is unknown. In this case, we
additionally test the OPE estimators for robustness to choice of
machine learning method to obtain 7.

Tables 2 and 3 describe hyperparameter spaces © for each es-
timator. Note that we use RandomizedSearchCV implemented in
scikit-learn with n_iter = 5 to tune hyperparameters of reward
estimator ¢ and behavior policy estimator 7;,. We additionally use
CalibratedClassifierCV implemented in scikit-learn with cv = 2

3We run the experiments using our pyIEOE software and will publicize the whole code
in the near future. By using it, anyone can replicate the results easily. At this time, we
share pyIEOE in the supplementary materials. We also provide detailed description of
the software in Appendix D.



when estimating the behavior policy, as calibration of the behavior
policy estimator matters in OPE [15]. Then, we use the uniform
distribution as ¢ for other hyperparameters such as 7 in Switch-DR.
Table 4 shows the true behavior policy and five different evaluation
policies to construct II,. Finally, we set S = {0, 1,...,499}.

5.3 Results

Figures 2 and 3 visually compare the CDF of the estimators’ squared
error for each dataset in true and estimated behavior policy set-
tings. We also confirm the observations in a quantitative manner by
computing AU-CDF, CVaRy 7, and Std of the squared error of each
OPE estimator. We report these summarization scores in Tables 5
and 6.

First, in the setting where the true behavior policy is available,
it is obvious that IPW is the best estimator and achieves the most
accurate estimation in almost all regions. SNIPW also performs com-
parably better than other estimators. In contrast, model-dependent
estimators, especially DM and DRos perform poorly compared to
the typical estimators such as IPW and SNIPW. 4 We observe here
that these model-dependent estimators perform worse, when the
reward estimator ¢ has a serious bias issue. On the other hand, we
do not have to care about the specification of ¢ when we use IPW or
SNIPW. Therefore, we conclude that simple estimators with fewer
hyperparameters tend to perform well for a wide variety of settings
when the true behavior policy is recorded.

In the setting where the behavior policy needs to be estimated,
we observe similar trends. First, Figure 3 and Table 6 show that
IPW achieves the most accurate estimation even when it uses the
estimated behavior policy.® Second, DR shows considerably large
squared errors when the behavior policy is estimated. This is be-
cause DR is vulnerable to the over-fitting of ;. DR produces large
squared errors when 7, over-fits the data and outputs extreme
estimations (we observe that the minimum estimated action choice
probability is 1077). With these extreme estimated action choice
probabilities, the importance weights used in DR also becomes
large, amplifying the estimation error of reward estimator ¢. This
leads to serious overestimation of the policy value of .. Note that
other estimators based on DR such as Switch-DR and DRos pre-
vent this overestimation issue, because they cut off extremely large
importance weights. However, these advanced estimators underper-
form IPW in most cases in both true and estimated behavior policy
settings, suggesting that the benefits of these advanced estimators
are limited and they are relatively sensitive to the configuration
changes.

In summary, our procedure suggests that IPW is the best in
achieving reliable offline evaluation in the sense that it performs sta-
bly across different evaluation policies for both true and estimated
behavior policy cases. In contrast, we find that the performance of
popular estimators such as DR depend heavily on hyperparameter

4The plot of DM is out of range due to the large squared errors in Optdigits. We share
its CDF plot showing wider regions in Appendix A.

SWe additionally confirm the results with the Open Bandit Dataset [1] in Appendix C.
SWhen the behavior policy estimator is not calibrated, IPW shows extremely large
squared errors in some cases as we show in Appendix A. In such cases, SNIPW is safer
to use. This additional study suggests that calibration of the behavior policy estimation
matters, which is consistent with the previous empirical results provided by Raghu et
al. [15].

choices, leading to the serious overestimation issue and making
them difficult to use in practice.

We suggest that future OPE research use the IEOE procedure to
test the stability and robustness of OPE estimators. This additional
experimental effort will produce substantial information about the
estimators’ usability in practice, as we have seen in this section.

6 REAL-WORLD APPLICATION

In this section, we apply our procedure to a real-world application.

6.1 Setup

To show how to use our evaluation procedure in a real-world ap-
plication, we conducted a data collection experiment on a real
e-commerce platform in September 2020. The platform wants to
use OPE to improve the performance of its coupon optimization
policy safely without conducting A/B tests. However, it does not
know which estimator is appropriate for its specific application
and environment. Therefore, we apply the IEOE procedure with
the aim of providing suitable estimator choice for the platform.

During the data collection experiment, we constructed D4, Dp,
and D¢ by randomly assigning three different policies (74, 7p,
and ¢) to users on the platform. In this application, x is a user’s
context vector, a is a coupon assignment variable (where there
are four different types of coupons, i.e., |A| = 4), and r is either
a user’s content consumption indicator (binary outcome) or the
revenue from each user observed within the 7-day period after the
coupon assignment (continuous outcome). The total number of
users considered in the experiment was 39,687, and each of Dy,
Dp, and D¢ has approximately one third of the users.

Note that, in this application, there is a risk of over-fitting due to
the intensive hyperparameter tuning of OPE estimators, as the size
of the logged bandit feedback data is not large. Moreover, to reduce
the implementation cost, we do not want to tune OPE estimators’
hyperparameters every time the platform’s data scientists use OPE.
Therefore, following the IEOE procedure, we aim to find and use
an estimator that is stable without hyperparameter tuning.

6.2 Performance Measure

To apply our evaluation procedure, we need to define a performance
measure (SE in step 6 of Algorithm 1). We can do this by using our
real-world data. We first pick one of the three policies as evaluation
policy 7, and regard the others as behavior policies. When we
choose 74 as an evaluation policy, we define Dey = Dp U D¢
and Die = D 4. Then, we apply the following procedure (which is
slightly different from that with classification data)’ to given OPE
estimator V to compute SE as its performance measure:

(1) Estimate the policy value V(me; D*, 0) with tuple (7e, D*, )
sampled in the algorithm.

(2) Estimate V(7e) by the on-policy estimation (the empirical
average of the observed rewards in De), i.e., Von(7e; Dre) :=
En[ri]. R

(3) Compare the off-policy estimate V(7e; Dey) with its on-
policy counterpart Von (7¢; Die) using SE as a performance

measure of V, i.e., SE(V; D*, 7¢, 0) = (V (763 D*, 0)—Von (e; Die))2.

"We describe the modified version of IEOE algorithm applicable to real-world logged
bandit data in detail in Appendix B.



Table 2: Hyperparameter spaces for OPE estimators

OPE Estimators ‘ Hyperparameter Spaces
Direct Method K e{1,2,...,5}, ¢ € {LR/RRRF,LightGBM}
Inverse Probability Weighting (IPW) (7 € {LR.RF,LightGBM})
Self-Normalized IPW (7 € {LR,RF,LightGBM})
Doubly Robust (DR) K e{1,2,...,5}, ¢ € {LR/RRRF,LightGBM}, (7, € {LRRF,LightGBM})
Self-Normalized DR K e{1,2,...,5}, ¢ € {LR/RRRF,LightGBM}, (&, € {LR,RF,LightGBM})
Switch-DR € [1,100], K € {1,2,...,5}, § € {LR/RR,RF,LightGBM}, (%, € {LR,RF,LightGBM})
DRos A€ [1,100], K € {1,2,...,5}, § € {LR/RR,RF,LightGBM}, (%, € {LR,RF,LightGBM})

Note: LR/RR means that LogisticRegression (LR) is used when Y is binary and RidgeRigression (RR) is used otherwise. RF stands for RandomForest.
7p is an estimated behavior policy. This is unnecessary when we know the true behavior policy, and thus it is in parentheses. K = 1 means that
we do not use cross-fitting and train a reward estimator using whole logged bandit feedback data D.

Table 3: Hyperparameter spaces for reward estimator ¢ and behavior policy estimator 7,

Reward Estimators ‘

Hyperparameter Spaces

LogisticRegression (binary outcome)
RidgeRegression (continuous outcome)
RandomForest
LightGBM

C € [1073,10%]
a € [1072,10%]

max_depth € {2,3,...,10}, min_samples_split € {5,6,...,20}
learning_rate € [107%,107!], max_depth € {2,3, ..., 10}, min_samples_leaf € {5,6, ..., 20}

Note: The names of the hyperparameters correspond to the ones specified by the scikit-learn package. For LogisticRegression, we use
max_iter = 10000. For RandomForest, we use n_estimators = 100 and for LightGBM, we use max_iter = 100.

Table 4: Behavior and Evaluation Policies in Experiments on Classification Datasets

Behavior and Evaluation Policies

Base Machine Learning Classifier (74,;) Alpha (@)

behavior policy
evaluation policy 1
evaluation policy 2
evaluation policy 3
evaluation policy 4

evaluation policy 5

LogisticRegression 0.9
LogisticRegression 0.8
LogisticRegression 0.2
RandomForest 0.8
RandomForest 0.2
None (uniform random) 0.0

Note: For LogisticRegression, we use C = 100, max_iter = 10000. For RandomForest, we use n_estimators = 100,
min_samples_split = 5, max_depth = 10. We also set random_state = 12345 for both classifiers. The names of the hyperparameters correspond to

the ones specified by the scikit-learn package.

6.3 Estimators and Hyperparameters

We use the IEOE protocol to identify the best estimator among DM,
IPW, SNIPW, DR, SNDR, Switch-DR, and DRos.

During the data collection experiment, we logged the true action
choice probabilities for the three policies, and thus IPW and SNIPW
are hyperparameter-free here. We use the hyperparameter spaces
defined in Tables 2 and 3 for our real-world application. In addition,
we use the uniform distribution as ¢, and set S = {0, 1,...,1999}
and I1, = {7a, 7B, 7c}.

6.4 Results

We applied Algorithm 1 to the above estimators for the binary
outcome data and the continuous outcome data, respectively.
Figure 4 compares the CDF of the estimators’ squared error for
each outcome. First, it is obvious that SNIPW is the best estimator
for the binary outcome case, achieving the best accuracy in almost

all regions. We can also argue that SNIPW is preferable for the
continuous outcome case, because it reveals the most accurate
estimation in the worst case and is hyperparameter-free, although it
underperforms DM in some cases. On the other hand, IPW performs
poorly for both outcomes, because our dataset is not large and some
behavior policies are near deterministic, making IPW an unstable
estimator. Thus, it is unsafe to use IPW in our application, even
though it is also hyperparameter-free and tractable.

We additionally confirm the above observations in a quantitative
manner. For both binary and continuous outcomes, we compute AU-
CDF, CVaRy_7, and Std of the squared error of each OPE estimator.
We report these summarization scores in Table 7, and the results
demonstrate that SNIPW clearly outperforms other estimators in
almost all situations. Through this evaluation of offline evaluation
practice, we concluded that the e-commerce platform should use
SNIPW for its offline evaluation. After comprehensive accuracy



Cumulative distribution of squared error

1.0 1.0

o
@
o
@

ipw

snipw

dm

dr

sndr

switch-dr
—— dros

o
IS

Cumulative probability
s

Cumulative probability
° °
» o

o
N
o
N

%%OOO 0.0002 0.0004 0.0006 0.0008 0.0010 OOOOOO 0.002

Squared error

OptDigits

Cumulative distribution of squared error

0.004
Squared error

PenDigits

Cumulative distribution of squared error

1.0

o
@

Cumulative probability
°
>

ipw ipw
snipw snipw
dm 1 0.4 dm T
dr dr
sndr 0.2 sndr
switch-dr switch-dr

—— dros —— dros

0.006 0.008 0.010 %00 0002 0004 0006 0008 0010

Squared error

SatImage
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Figure 4: Comparison of the CDF of OPE estimators’ squared error in real-world application

and stability verifications, the platform is now using SNIPW to
improve its coupon optimization policy safely.

7 CONCLUSION AND FUTURE WORK

In this paper, we argued that the current dominant evaluation pro-
cedure for offline evaluation cannot detect the volatility of the
estimators’ performances. Instead, the evaluation procedure we
develop for offline evaluation provides an interpretable way to not
only decide which estimator is more likely to be accurate than the

other, but how robust each estimator is to the choice of hyperpa-
rameters or changes in evaluation policies. We have also developed
open-source software to streamline our interpretable evaluation
procedure. It enables rapid benchmarking and validation of offline
evaluation methods so that practitioners can spend more time on
the real decision making problems, and OPE researchers can focus
more on tackling advanced technical questions in future research.
We perform an extensive re-evaluation of a wide variety of OPE
estimators and found that IPW is more stable than other advanced
estimators, being robust to varying experimental configurations.



Table 5: Summarization scores of the OPE estimators in the benchmark experiment with true behavior policy

‘ OptDigits PenDigits Satlmage
OPE Estimators \ AU-CDF CVaR,; std AU-CDF CVaR,; Std AU-CDF CVaR,; Std
Direct Method 0.000"  2135.07°7 1591.12F 02057 1604.217 765.46" 03217 315987 179.12F
Inverse Probability Weighting (IPW) | 1.000* 1.00" 1.00* 1.000* 1.00* 1.02° 1.000* 1.00* 1.00*
Self-Normalized IPW 0.906° 2.56° 3.22° 0.988° 1.92° 1.00* 0.983° 1.56° 1.16°
Doubly Robust (DR) 0.283 142.84 157.48 0.749 27.97 15.00 0.830 7.91 4.74
Self-Normalized DR 0.371 110.18 137.76 0.867 16.73 11.44 0.915 4.69 3.12
Switch-DR 0.167 1829.12 152448 0.531 1217.33  718.87 0.589 23231  168.14
DRos 0.020 1856.13  1385.51 0.287 1337.07  667.24 0.346 26540  158.69

Note: Larger value is better for AU-CDF and lower value is better for CVaR and Std. Note that we normalize the summarization scores by dividing
them by the best score among all estimators. We use zmax = 1.0 X 1072 for OptDigits and zyax = 1.0 X 1072 for Pendigits and SatImage to calculate
AU-CDF. The red” and green® fonts represent the best and second-best estimators, respectively. The blue’ fonts represent the worst estimator.

Table 6: Summarization scores of the OPE estimators in the benchmark experiment with estimated behavior policy with
calibration

‘ OptDigits PenDigits SatImage

OPE Estimators \ AU-CDF CVaR,; Std AU-CDF CVaRg; Std AU-CDF  CVaRy; Std

Direct Method 0.569 11.11 5.98 0.680 7.01 5.32 0.914 151 1.19

Inverse Probability Weighting (IPW) | 1.000* 1.00* 1.00* 1.000" 1.00* 1.00" 1.000" 1.00" 1.07

Self-Normalized [PW 0.789 7.51 4.53 0.744 6.65 4.92 0.773 3.11 2.54
Doubly Robust (DR) 0.567" 69.93"  100.94" 0549  1629.74" 2571.15" 0653%  7.21x107" 2.24x 108"

Self-Normalized DR 0.826° 6.24° 3.76° 0.853° 4.42° 3.88° 0.872 2.98 3.20

Switch-DR 0.672 9.85 5.25 0.778 5.72 4.63 0.961° 1.17° 1.00*

DRos 0.624 10.12 5.34 0.729 6.17 4.73 0.939 1.30 1.04°

Note: Larger value is better for AU-CDF and lower value is better for CVaR and Std. Note that we normalize the scores by dividing them by the
best score among all estimators. We use zyay = 0.5 to calculate AU-CDF. The red* and green® fonts represent the best and second-best estimators,
respectively. The blue' fonts represent the worst estimator.

Table 7: Summarization scores of the OPE estimators in real-world application

‘ Binary Outcome Continuous Outcome

OPE Estimators ‘ AU-CDF CVaRy; Std AU-CDF CVaR;; Std

Direct Method 0.954 11.88  50.73° 1.000* 1.51 2.33
Inverse Probability Weighting (IPW) | 0.721"  32.867 29.93° 0.606°  21.03" 15537
Self-Normalized IPW 1.000" 1.00°  1.00° 0.962° 1.00°  1.00
Doubly Robust (DR) 0.972 11.25 49.62 0.905 1.57 1.71
Self-Normalized DR 0.959 10.38° 4776 0.919 1.21° 117°
Switch-DR 0.882 1226  49.66 0.861 233 2.93

DRos 0.980° 11.64  50.11 0.956 1.61 2.19

Note: Binary Outcome is the results when the outcome is each user’s content consumption indicator. Continuous Outcome is the results when
the outcome is the revenue from each user observed within the 7-day period after the coupon assignment. Larger value is better for AU-CDF and
lower value is better for CVaR and Std. Note that we normalize the scores by dividing them by the best score among all estimators. We use

Zmax = 5.0 X 107 for the binary outcome and zp,x = 80 for the continuous outcome to calculate AU-CDF. The red* and green® fonts represent the
best and second-best estimators, respectively. The blue' fonts represent the worst estimator.

Finally, we applied our procedure to a real-world application and offline evaluation is limited to the simple contextual bandit setting.
demonstrated its practical usage. Moreover, investigating how our study could spur the development
In future work, we plan to extend our re-evaluation to a more gen- of offline policy learning methods that are robust to configuration

eral reinforcement learning setting as the current re-evaluation of changes would be interesting.
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A ADDITIONAL SETUP AND RESULTS ON
CLASSIFICATION DATASETS
A.1 Classification Dataset

Table 8 shows some statistics of the datasets used in the benchmark
experiments in Section 5.

Table 8: Classification datasets used in the benchmark exper-
iments

Datasets ‘ #Samples #Actions #Dimensions
OptDigits 5,620 10 64
PenDigits 10,992 10 16
SatImage 6,435 6 36

Note: #Samples is the size of the dataset we use for the benchmark
experiment. #Actions is the total number of actions (i.e., classes).
#Dimensions is the number of dimensions of the context (i.e.,
feature) vector.

A.2 Result with estimated behavior policy
without calibration

Here we additionally report the results for the setting where the
estimated behavior policy without calibration is used.

Figure 5 and Table 9 show that, when the behavior policy esti-
mator is not calibrated, IPW shows extremely large squared errors
in some cases. In such cases, SNIPW is safer to use. This additional
study suggests that calibration of the behavior policy estimation
matters, which is consistent with the previous empirical results
provided by Raghu et al. [15].

A.3 CDF plot in wider range
Figures 6 - 8 show CDF plots in full region of the performance.

B MODIFIED VERSION OF IEOE

Algorithm 2 presents a modified version of the proposed IEOE
procedure that can be used in real-world applications. To evaluate
the performance of V with real-world data, we need to specify a
candidate set of hyperparameters ©, a set of evaluation policies
e = {xj }ﬁzl, a hyperparameter sampling function ¢, and a set
of random seeds S. We also need several logged bandit feedback
datasets {Z)j}ji:1 where each dataset D; is collected by 7;. Then,
for every seed s € S, the algorithm samples a set of hyperparam-
eters § € © based on a sampler ¢. We can use a hyperparameter
tuning method for OPE estimators such as the one used in [25]
or the uniform distribution as ¢. Next, the algorithm samples an
evaluation policy 7; € II, from the discrete uniform distribution.
Then, the evaluation and test sets are defined as D¢e = D; and
Dey = Ull;:l-k;tj D; where the evaluation set is used in OPE and
the test set is used to calculate the ground-truth performance of r;
Then, the algorithm replicates the environment & under considera-
tion using the bootstrap sampling from Dey. A bootstrapped logged
bandit feedback dataset is defined as D¢, := {(x}, a},r})}}., where
each tuple (x}, a}, r}) is sampled independently from Dey with re-
placement. Finally, for a sampled tuple (7., D*, 6), it computes the

squared error as follows
A 2
z= (Von(”ﬁﬂte) - V(”ﬁ 0, D:V))

where Von (7j; Dte) = En[r;] is the on-policy estimate of the policy
value of 7; estimated with the test set. After applying Algorithm 1
to several estimators and obtaining the empirical CDF of their
evaluation performances, we can visualize them or compute their
summarization scores to discuss their robustness and to decide
which estimator to use for a specific environment.

Algorithm 2 Interpretable Evaluation for Offline Evaluation (A
Modified Version)

Input: logged bandit feedback datasets {D; }521, an estimator to

be evaluated V, a candidate set of hyperparameters ©, a set of
evaluation policies IT, = {7 }§:1’ a hyperparameter sampler ¢
(default: uniform distribution), a set of random seeds S
Output: empirical CDF, F, of the squared error (SE)
1: Z —0
2: fors € S do
30— ¢(8;s)

4 mj « Unif (I; s)

5 Die=Djand Dey=Up_yy,; D)
6: Di, < Bootstrap(Dey; s)

7: Von(”j;Dte) = En[ri]

. 2
8: z' (Von(”jQDte) - V(”ﬁe, Z)zv))
9 Z—Zu{z"}
10: end for
11: Estimate Fz using Z (by Eq. (1))

C EXPERIMENTS WITH OPEN BANDIT
DATASET

C.1 Setup

We additionally conducted experiments on Open Bandit Dataset
(OBD)®. OBD is a set of logged bandit feedback datasets collected
on a large-scale fashion e-commerce platform provided by Saito
et al. [16]. There are three campaigns, "ALL", "Men", and "Women".
In our experiment, we use size 30,000 and 300,000 of randomly
sub-sampled data from the "ALL" campaign. The dataset contains
user context as feature vector x € X, fashion item recommendation
as action a € A, and click indicator as reward r. The dimensions of
the feature vector x and the number of the actions |A| are 20 and
80, respectively.

The dataset consists of subsets of data collected by two different
policies, i.e., the uniform random policy and the Bernoulli Thomp-
son Sampling policy [22]. We let D4 denote a dataset collected
by uniform random policy 74 and Dp to denote that collected by
Bernoulli Thompson Sampling policy 7p. We let one of the two
policies as evaluation policy 7, and regard the other as behavior
policy when applying our IEOE procedure. When we choose 74
as an evaluation policy, for example, we define Dey = Dp and

8https://research.zozo.com/data html
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Figure 5: Comparison of the CDF of OPE estimators’ squared error in the benchmark experiment with estimated behavior

policy without calibration

Table 9: Summarization scores of the OPE estimators in the benchmark experiment with estimated behavior policy without

calibration
‘ OptDigits PenDigits SatImage
OPE Estimators \ AU-CDF CVaR,; Std AU-CDF CVaR,; Std AU-CDF  CVaR,; std
Direct Method 0.787 2.12 1.39 0.841 1.89 1.37 0.934 3.76 1.18
Inverse Probability Weighting (IPW) | 1.000" 1.00% 7.31 1.000" 1.00* 7.66 1.000* 1.00* 1.57
Self-Normalized IPW 0.846 1.87 1.26 0.855 1.86 1.28 0.852 8.31 2.58
Doubly Robust (DR) 0.687" 837" 10.48" 0.604" 271517 407527 06427  215x10"" 2.86x 10"’
Self-Normalized DR 0.881° 1.47° 1.00* 0.918° 1.21° 1.00* 0.887 7.47 3.17
Switch-DR 0.823 1.93 1.24° 0.880 1.55 1.16° 0.953° 2.98° 1.00*
DRos 0.807 1.97 1.26 0.863 1.67 1.22 0.944 3.29 1.05°

Note: Larger value is better for AU-CDF and lower value is better for CVaR and Std. Note that we normalize the scores by dividing them by the
best score among all estimators. We use zyay = 1.0 to calculate AU-CDF. The red* and green® fonts represent the best and second-best estimators,

respectively. The blue' fonts represent the worst estimator.

Die = D4. By applying the same procedure as Section 6.2, we
compute SE for each OPE estimator.

In the experiments with OBD, we use true behavior policy. In
addition, we use the uniform distribution as ¢ for all hyperparame-
ters including those in reward regression model §. We use the same
hyperparameter spaces as in Section 5, given in Table 2 and 3. We
set S ={0,1,...,499}.

C.2 Result

Figure 9 visually compares the CDF of the estimators’ squared error
for each dataset in both ground-truth and estimated behavior policy
settings. We also report summarization scores of AU-CDF, CVaRy 7,
and Std in Table 10.

When we use large size of the dataset (i.e., size = 300,000), we
confirm that the same results are observed as in the benchmark
experiment with classification datasets in true behavior policy set-
ting; IPW and SNIPW achieves better squared errors than other
model-based estimators and DM especially performs poorly. On
the other hand, with the small size of the dataset (i.e., size = 30,000,
which is extremely small relative to the action space |Al), [PW and
SNIPW record relatively large squared errors compared to those
under the large sample setting. The result indicates that, under the

small sample setting, IPW and SNIPW may suffer from the vari-
ance issue, while the performances of the other estimators remain
almost the same compared to those under the large sample setting.
Therefore, preparing the enough size of dataset is also essential in
OPE.

D SOFTWARE IMPLEMENTATION

In addition to developing the evaluation procedure, we have imple-
mented open-source Python software, pyIEOE, to streamline the
evaluation of offline evaluation methods with our protocol. This
package is built with the intention of being used with OpenBan-
ditPipeline (obp).° We plan to publicize the whole package in a
GitHub repository in the near future.

In Code Snippet 1, we show the essential codes to conduct an in-
terpretable evaluation on various OPE estimators with our software
so that one can grasp the usage of the software easily. Primarily,
only four lines of code are sufficient to complete our IEOE procedure
in Algorithm 1 except for some preparations.

In the following subsections, we explain the procedure including
preparations in detail, by showing an example of conducting an
interpetable evaluation on OPE estimators using synthetic dataset.

“https://github.com/st-tech/zr-obp
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Figure 6: Comparison of the CDF of OPE estimators’ squared error for the benchmark experiment with true behavior policy
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Figure 7: Comparison of the CDF of OPE estimators’ squared error for the benchmark experiment with estimated behavior

policy without calibration
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Figure 8: Comparison of the CDF of OPE estimators’ squared error for the benchmark experiment with estimated behavior

policy with calibration

D.1 Preparing Dataset and Evaluation Policies

Before using pyIEOE, we first need to prepare logged bandit feed-
back data and a set of evaluation policies. Here, each evaluation
policy consists of its action distribution and ground-truth policy
value. We can conduct this preparation by using the dataset module
of obp as shown in Code Snippet 2.

In addition to synthetic dataset, both multi-class classification
dataset and real-world dataset such as Open Bandit Dataset [16]

and their own environment specific dataset are applicable by fol-
lowing preprocessing procedure of obp. Users can also define a set
of evaluation policies by themselves.

D.2 Defining Hyperparameter Spaces

After preparing dataset and a set of evaluation policies, we now
define hyperparameter spaces used in OPE estimators as shown in
Code Snippet 3.
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Figure 9: Comparison of the CDF of OPE estimators’ squared error in Open Bandit Dataset

Table 10: Summarization scores of the OPE estimators on Open Bandit Dataset with different sample size

\ size = 30, 000 size = 300, 000
OPE Estimators ‘ AU-CDF CVaR;; Std AU-CDF CVaR;; Std
Direct Method 0.930 1.18°  1.05° 0.682" 5.02F 376
Inverse Probability Weighting (IPW) | 0.920" 1.46 1.48 1.000* 1.00°  1.00*
Self-Normalized IPW 0.921 1.47 1.50 0.999° 1.02° 1.02°¢
Doubly Robust (DR) 0.921 154" 1617 0.936 2.93 4.58
Self-Normalized DR 0.921 153 1.60 0.936 293 459
Switch-DR 0.957° 131 136 0.839 3.97 3.99
DRos 1.000* 1.00°  1.00* 0.781 4.23 3.78

Note: Larger value is better for AU-CDF and lower value is better for CVaR and Std. Note that we normalize the scores by dividing them by the
best score among all estimators. We use zmax = 1.0 X 107> for size = 30, 000 and zyay = 5.0 X 107 for size = 300, 000 to calculate AU-CDF. The red*
and green® fonts represent the best and second-best estimators, respectively. The blue” fonts represent the worst estimator.

Users can define hyperparameter spaces for both OPE estimators
and the regression model used in OPE estimators by themselves.

D.3 Interpretable OPE Evaluation

Finally, we evaluate OPE estimators in an interpretable manner. Our
software provides an easy step to follow our evaluation procedure
as shown in Code Snippet 4.

Users can intuitively find out the most reliable estimator in vari-
ous OPE estimators by comparing the CDF plot of squared errors.
In addition, quantitative comparison is also available by calculating
AU-CDF and CVaR as performance measures. In this case, it is easy
to figure out that SNDR outperforms DRos.



# import InterpretableOPEEvaluator
>>> from pyieoe.evaluator import InterpretableOPEEvaluator

# initialize InterpretableOPEEvaluator class
>>> evaluator = InterpretableOPEEvaluator(

random_states=np.arange(1000),

bandit_feedbacks=[bandit_feedback],

evaluation_policies=[
(ground_truth_a, action_dist_a),
(ground_truth_b, action_dist_b),

1,

ope_estimators=[
DoublyRobustWithShrinkage(),
SelfNormalizedDoublyRobust(),

.

1,

regression_models=[
LogisticRegression,
RandomForest,

1,

regression_model_hyperparams={
LogisticRegression: lr_hp,
RandomForest: rf_hp,

.

I8

ope_estimator_hyperparams={

DoublyRobustWithShrinkage.estimator_name: dros_param,

SelfNormalizedDoublyRobust.estimator_name:

.

# estimate policy values

>>> policy_value = evaluator.estimate_policy_value()

sndr_param,

# visualize CDF of squared errors for each OPE estimator
>>> evaluator.visualize_cdf_aggregate() # plot CDF curves

Code Snippet 1: Essential Codes for Interpretable OPE Evaluation




# import necessary package from obp

>>> from obp.dataset import (
SyntheticBanditDataset,
logistic_reward_function,
linear_behavior_policy

)

# initialize SyntheticBanditDataset class

>>> dataset = SyntheticBanditDataset(
n_actions=10,
dim_context=5,
reward_type="binary", # "binary" or "continuous
reward_function=logistic_reward_function,
behavior_policy_function=linear_behavior_policy,
random_state=12345,

)
# obtain synthetic logged bandit feedback data
>>> bandit_feedback = dataset.obtain_batch_bandit_feedback(n_rounds=10000)
# prepare action distribution and ground truth policy value for each evaluation policy
>>> action_dist_a = #...
>>> ground_truth_a = #..
>>> action_dist_b = #...
>>> ground_truth_b = #..

Code Snippet 2: Preparing Dataset and Evaluation Policies

# define hyperparameter spaces for ope estimators
>>> lambda_ = {
"lower": 1e-3,
"upper": 1le2,
"log": True,
"type": float
}
>>> K = {
"lower": 1,
"upper": 5,
"log": False,
"type": int
}
>>> dros_param = {"lambda_": lambda_, "K": K}
>>> sndr_param = {"K": K}
# define hyperparameter spaces for regression models

>>> C = {
"lower": le-3,
"upper": 1e2,
"log": True,
"type": float
3
>>> n_estimators = {
"lower": 20,
"upper": 200,
"log": True,
"type": int
3

>>> 1r_hp = {"C": C}
>>> rf_hp = {"n_estimators": n_estimators}

Code Snippet 3: Defining Hyperparameter Spaces




# import InterpretableOPEEvaluator

>>> from pyieoe.evaluator import InterpretableOPEEvaluator

# import other necessary packages

>>> from sklearn.linear_model import LogisticRegression

>>> from sklearn.ensemble import RandomForestClassifier as RandomForest

>>> from obp.ope import DoublyRobustWithShrinkage, SelfNormalizedDoublyRobust

# initialize InterpretableOPEEvaluator class
# define OPE estimators to evaluate
>>> evaluator = InterpretableOPEEvaluator(
random_states=np.arange(1000),
bandit_feedbacks=[bandit_feedback],
evaluation_policies=[
(ground_truth_a, action_dist_a),
(ground_truth_b, action_dist_b)
1,
ope_estimators=[
DoublyRobustWithShrinkage(),
SelfNormalizedDoublyRobust(),

1,

regression_models=[
LogisticRegression,
RandomForest,

1,

regression_model_hyperparams={
LogisticRegression: lr_hp,
RandomForest: rf_hp,

i

ope_estimator_hyperparams={
DoublyRobustWithShrinkage.estimator_name: dros_param,
SelfNormalizedDoublyRobust.estimator_name: sndr_param

)
# estimate policy values
>>> policy_value = evaluator.estimate_policy_value()
# compute squared errors
se = evaluator.calculate_squared_error()
# compare OPE estimators in an interpretable manner by visualizing CDF of squared errors
>>> evaluator.visualize_cdf_aggregate() # plot CDF curves

# quantitative analysis by AU-CDF and CVaR

>>> au_cdf = evaluator.calculate_au_cdf_score(threshold=0.004)
>>> print(au_cdf)

{"dr-os": 0.000183.., "sndr": 0.000257..%}

>>> cvar = evaluator.calculate_cvar_score(alpha=70)

>>> print(cvar)

{"dr-os": ©.000456.., "sndr": 0.000194..}

Code Snippet 4: Interpretable OPE Evaluation
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