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1 INTRODUCTION

In bandit and reinforcement learning, off-policy (batch) policy evaluation attempts to estimate the performance of

some counterfactual policy given data from a different logging policy.
1
Off-policy evaluation (OPE) is essential when

deploying a new policy might be costly or risky, such as in education, medicine, consumer marketing, and robotics.

OPE relates to other fields that study counterfactual/causal reasoning, such as statistics and economics.

Most existing OPE studies focus on stochastic logging policies, such as stochastic bandit (e.g. 𝜖-greedy and Thompson

Sampling) and random A/B testing. However, real-world decision-making often uses deterministic logging policies,

including deterministic bandit (e.g. Upper Confidence Bound) as well as deterministic decision-making based on

predictions obtained from supervised and unsupervised learning. An example in the latter group is a policy that greedily

chooses the action with the largest predicted reward. OPE is difficult with a deterministic logging policy, since its log

data contain no information about the reward from actions never chosen by the deterministic logging policy [17].

We provide a solution to this problem. Our proposed OPE estimator is applicable not only to stochastic logging

policies but also to deterministic logging policies. We also allow for hybrid stochastic and deterministic logging policies,

i.e., logging policies that choose actions stochastically for some individuals and deterministically for other individuals.

RelatedWork.Widely-used OPE methods include inverse probability weighting (IPW) [16, 20], self-normalized IPW

[23], Doubly Robust [5], and more advanced variants [6, 21, 28]. These methods are based on importance sampling (IS)

and require that the logging policy assigns a positive probability to every action potentially chosen by the counterfactual

policy. This restriction makes them hard to use when the logging policy is deterministic.

There are two existing approaches to deterministic logging policies. The first approach considers a logging policy

that varies over time or across individuals [20]. Viewing the sequence of varying logging policies as a single stochastic

logging policy, it is possible to apply IS-based OPE methods. Unlike this approach, our approach is usable even when

the logging policy is fixed. The second approach, called the Direct Method or Regression Estimator, predicts the mean

1
Key prior studies include [1, 3, 5, 11–13, 15, 18–24, 27, 29] for bandit, and [6–9, 14, 16, 25, 26] for reinforcement learning.
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reward conditional on the action and context by supervised learning and uses the prediction to estimate the performance

of a counterfactual policy [2, 5]. Similar regression-based methods are proposed for reinforcement learning settings [4].

This approach is sensitive to the accuracy of the mean reward prediction. It may have a large bias if the regression

model is not correctly specified. This issue is particularly severe when the logging policy is deterministic, since each

action is observed only in a limited area of the context space. Our approach instead predicts the mean reward differences

between actions by exploiting local subsamples near the decision boundaries without specifying the regression model.

This idea relates to regression discontinuity designs in the social sciences [10].

2 FRAMEWORK ANDMETHOD

A = {1, ...,𝑚} is a set of actions that the decision maker can choose from. Let 𝑌 (𝑎) be the potential reward when action

𝑎 is chosen. Let 𝑋 ∈ X ⊂ R𝑝 denote the context that the decision maker observes when picking an action, where 𝑝

is the number of context variables. To simplify the exposition, we assume that 𝑋 is continuously distributed. If some

context variables in 𝑋 are discrete, our analysis still holds conditional on the discrete variables.

We consider policies that choose actions based on individual context 𝑋 . Let 𝑀𝐿 : R𝑝 → Δ(A) represent the
logging policy, where𝑀𝐿(𝑎 |𝑥) is the probability of taking action 𝑎 for individuals with context 𝑥 . We assume that the

analyst knows the logging policy and is able to simulate it. We allow for the case with deterministic policies, in which

𝑀𝐿(𝑎 |𝑥) ∈ {0, 1} for every (𝑎, 𝑥). Suppose we have log data {(𝑌𝑖 , 𝑋𝑖 , 𝐴𝑖 )}𝑛𝑖=1 generated as follows. For each individual 𝑖 ,

(1) (𝑌𝑖 (·), 𝑋𝑖 ) is i.i.d. drawn from an unknown distribution; (2) Given 𝑋𝑖 , the action 𝐴𝑖 is randomly chosen based on the

probability𝑀𝐿(·|𝑋𝑖 ); (3) We observe the reward 𝑌𝑖 = 𝑌𝑖 (𝐴𝑖 ). We are interested in estimating the expected reward from

any given counterfactual policy 𝜋 : R𝑝 → Δ(A), which chooses a distribution of actions given individual context:

𝑉 (𝜋) ≡ 𝐸
[ ∑
𝑎∈A

𝑌 (𝑎)𝜋 (𝑎 |𝑋 )
]
.

Proposed OPE Estimator.
(1) For a small bandwidth 𝛿 , compute the Approximate Propensity Score (APS):

𝑝𝑀𝐿
𝛿

(𝑎 |𝑋𝑖 ) ≡

∫
𝐵 (𝑋𝑖 ,𝛿) 𝑀𝐿(𝑎 |𝑥

∗)𝑑𝑥∗∫
𝐵 (𝑋𝑖 ,𝛿) 𝑑𝑥

∗ ,

where 𝐵(𝑋𝑖 , 𝛿) is a 𝑝-dimensional ball with radius 𝛿 centered at 𝑋𝑖 .
2

(2) Compute 𝑞𝑀𝐿
𝛿

(𝑎 |𝑋𝑖 ) ≡
𝑝𝑀𝐿
𝛿

(𝑎 |𝑋𝑖 )
𝑝𝑀𝐿
𝛿

(𝑎 |𝑋𝑖 )+𝑝𝑀𝐿
𝛿

(1 |𝑋𝑖 )
. For each 𝑎 = 2, ...,𝑚, minimize the sum of squared errors on the

subsample I(𝑎;𝛿) ≡ {𝑖 : 𝐴𝑖 ∈ {1, 𝑎}, 𝑞𝑀𝐿
𝛿

(𝑎 |𝑋𝑖 ) ∈ (0, 1)}:

(𝛼𝑎, ˆ𝛽𝑎, 𝛾𝑎) = argmin

(𝛼𝑎,𝛽𝑎,𝛾𝑎)

∑
𝑖∈I(𝑎;𝛿)

(
𝑌𝑖 − 𝛼𝑎 − 𝛽𝑎1{𝐴𝑖 = 𝑎} − 𝛾𝑎𝑞𝑀𝐿𝛿 (𝑎 |𝑋𝑖 )

)
2

,

where 1{·} is the indicator function.
(3) For any given counterfactual policy 𝜋 , define our OPE estimator for 𝑉 (𝜋) as:

𝑉 (𝜋) = 1

𝑛

𝑛∑
𝑖=1

(
𝑌𝑖 +

𝑚∑
𝑎=2

ˆ𝛽𝑎
(
𝜋 (𝑎 |𝑋𝑖 ) −𝑀𝐿(𝑎 |𝑋𝑖 )

))
. (1)

2𝑝𝑀𝐿
𝛿

(𝑎 |𝑋𝑖 ) may be difficult to compute analytically if𝑀𝐿 is complex. In such a case, we propose to approximate it using brute force simulation. We

draw a value of 𝑥 from the uniform distribution on 𝐵 (𝑋𝑖 , 𝛿) a number of times, compute𝑀𝐿 (𝑎 |𝑥) for each draw, and take the average of𝑀𝐿 (𝑎 |𝑥)
over the draws.

2



Off-Policy Evaluation with General Logging Policies BCIRWIS 2021, August 14–15, 2021,

Table 1. Simulation results: RMSE of estimators of𝑉 (𝜋 )

Our Proposed Method with APS Controls Method with Mean Differences Direct

𝛿 = 0.1 𝛿 = 0.5 𝛿 = 1 𝛿 = 2.5 A/B Test Sample Full Sample Method

(1) (2) (3) (4) (5) (6) (7)

Experiment 1: Mix of A/B Test and Deterministic Logging Policy

RMSE .115 .113 .112 .113 .118 .128 —

Avg. 𝑁 1862 6362 12502 33122 500 50000 —

Experiment 2: Upper Confidence Bound Logging Policy

RMSE .058 .056 .055 .055 — — .342

Avg. 𝑁 3397 17344 31107 47601 — — 50000

Notes: This table shows the root mean squared error (RMSE) of the estimators of the reward from the counterfactual policy𝑉 (𝜋 ) in the two simulation

experiments. We use 1, 000 simulations of a size 50, 000 simulated sample to compute these statistics. Columns (1)–(4) report estimates from our method

with several choices of 𝛿 used to compute APS. Each APS is computed by averaging 100 simulation draws of the𝑀𝐿 value. In columns (5)–(6), we

compute the mean reward differences between actions 𝑎 and 1 in the A/B test segment or the full sample, and them plug them into
ˆ𝛽𝑎 of Eq. (1). In column

(7), we use the Direct Method with a linear model. The bottom two rows of each panel show the average number of observations used for estimation.

APS of action 𝑎 at context 𝑥 is the average probability that the logging policy chooses action 𝑎 over a shrinking

neighborhood around 𝑥 (Step (1)). If APS at 𝑥 is nonzero for a pair of actions, the logging policy chooses both actions

locally around 𝑥 . This enables us to estimate the difference in the mean reward between the two actions by exploiting

the local subsample around 𝑥 (Step (2)). When the logging policy is deterministic, the subsample consists of individuals

near the decision boundary between the two actions. We then use the estimated reward differences to construct an

estimator for the performance of any given counterfactual policy (Step(3)).

Under the assumptions stated in Appendix A,𝑉 (𝜋) is shown to be a consistent estimator of the true expected reward

from a counterfactual policy, that is, 𝑉 (𝜋) converges in probability to 𝑉 (𝜋) as 𝑛 → ∞. This result holds whether the

logging policy is stochastic or deterministic.

3 SIMULATION EXPERIMENTS

We validate our method with two simulation experiments. The first considers a mix of stochastic and deterministic

policies as the logging policy. Actions are randomly chosen for a small A/B test segment of the population and are

chosen by a deterministic supervised learning algorithm for the rest of the population. The second experiment considers

a situation in which we have a batch of data generated by Upper Confidence Bound, a deterministic bandit algorithm.

In each experiment, we use our method and benchmark methods to evaluate the value of a counterfactual policy.

Table 1 reports the root mean squared error (RMSE) of our proposed estimator with several choices of 𝛿 and that of

alternative estimators in each experiment. In Experiment 1, although both our estimator and the alternative estimator

using the A/B test sample are consistent, our estimator outperforms the alternative in terms of RMSE. This is because

the alternative uses only the A/B test sample while our method additionally uses the local subsample near the decision

boundary of the deterministic policy. In Experiment 2, while the Direct Method suffers from large RMSE due to model

misspecification, our proposed estimator has a small RMSE. This also suggests the effectiveness of the use of local

subsample near decision boundaries.

4 REAL-WORLD APPLICATION

We empirically apply our method to evaluate and optimize coupon targeting policies. Our application is based on

proprietary data provided by Mercari Inc., a major e-commerce company running online C2C marketplaces in Japan and
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the US. This company uses a deterministic policy based on uplift modeling to decide whether they offer a promotional

coupon to each target customer. We use the data produced by their policy and our method to evaluate a counterfactual

policy that offers the coupon to more customers. Our method predicts that the counterfactual policy would increase

revenue more than the cost of coupon offers, suggesting that redesigning the current policy is profitable.
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A ASSUMPTIONS FOR CONSISTENCY

Assumption 1 (Constant Conditional Mean Differences). There exists a function 𝛽 : A × A → R such that

𝐸 [𝑌 (𝑎) |𝑋 ] − 𝐸 [𝑌 (𝑎′) |𝑋 ] = 𝛽 (𝑎, 𝑎′).

Our consistency result uses the following assumptions for the subsample assigned to one of the actions 𝑎 and 1, for

every 𝑎 ∈ {2, ...,𝑚}. Let X𝑎,1 ≡ {𝑥 ∈ X : 𝑀𝐿(𝑎 |𝑥) > 0 or 𝑀𝐿(1|𝑥) > 0}, 𝑀𝐿(𝑎 |𝑥) ≡ Pr(𝐴𝑖 = 𝑎 |𝐴𝑖 ∈ {1, 𝑎}, 𝑋𝑖 = 𝑥) =
𝑀𝐿 (𝑎 |𝑥)

𝑀𝐿 (𝑎 |𝑥)+𝑀𝐿 (1 |𝑥) , X
𝑎
𝑎,1

≡ {𝑥 ∈ X : 𝑀𝐿(𝑎 |𝑥) = 1}, and X1

𝑎,1
≡ {𝑥 ∈ X : 𝑀𝐿(𝑎 |𝑥) = 0}. In other words, X𝑎,1 is the set of

context values for which action 1 or 𝑎 can be taken, 𝑀𝐿(𝑎 |𝑥) is the probability of choosing action 𝑎 conditional on

𝐴𝑖 ∈ {1, 𝑎} and 𝑋𝑖 = 𝑥 , and X𝑎
𝑎,1

and X1

𝑎,1
are the set of context values for which the conditional probability is 1 and 0,

respectively.

Assumption 2. The following holds for all 𝑎 ∈ {2, ...,𝑚}.
(a) (Existence of Subsample) Pr(𝐴𝑖 ∈ {1, 𝑎}) > 0.

(b) (Almost Everywhere Continuity of𝑀𝐿)𝑀𝐿(𝑎 |·) and𝑀𝐿(1|·) are continuous almost everywhere on X𝑎,1 with respect

to the Lebesgue measure.

(c) (Measure Zero Boundaries of X𝑎
𝑎,1

and X1

𝑎,1
). For 𝑎′ ∈ {1, 𝑎}, L𝑝 (X𝑎′

𝑎,1
) = L𝑝 (int(X𝑎′

𝑎,1
)), where L𝑝 is the Lebesgue

measure on R𝑝 .

(d) (Finite Moments) 𝐸 [𝑌 2

𝑖
] < ∞.

(e) (Nonzero Conditional Variance) If Pr(𝑀𝐿(𝑎 |𝑋𝑖 ) ∈ (0, 1) |𝐴𝑖 ∈ {1, 𝑎}) > 0, then Var(𝑀𝐿(𝑎 |𝑋𝑖 ) |𝑀𝐿(𝑎 |𝑋𝑖 ) ∈
(0, 1), 𝐴𝑖 ∈ {1, 𝑎}) > 0.

If Pr(𝑀𝐿(𝑎 |𝑋𝑖 ) ∈ (0, 1) |𝐴𝑖 ∈ {1, 𝑎}) = 0, then the following conditions (f)–(i) additionally hold.

(f) (Deterministic𝑀𝐿) For all 𝑥 ∈ R𝑝 , either𝑀𝐿(𝑎 |𝑥) = 1 or𝑀𝐿(𝑎 |𝑥) = 0.

(g) (𝐶2
Boundary of Ω∗

𝑎) There exists a partition {Ω∗
𝑎,1
, ...,Ω∗

𝑎,𝐾
} of Ω∗

𝑎 = {𝑥 ∈ R𝑝 : 𝑀𝐿(𝑎 |𝑥) = 1} (the set of the context
values for which the probability of choosing action 𝑎 is one) such that

(1) dist(Ω∗
𝑎,𝑘
,Ω∗

𝑎,𝑙
) > 0 for any 𝑘, 𝑙 ∈ {1, ..., 𝐾} such that 𝑘 ≠ 𝑙 . Here dist(𝑆,𝑇 ) = inf𝑥 ∈𝑆,𝑦∈𝑇 ∥𝑥 − 𝑦∥ is the distance

between two sets 𝑆 and 𝑇 ⊂ R𝑝 ;
(2) Ω∗

𝑎,𝑘
is nonempty, bounded, open, connected and twice continuously differentiable for each 𝑘 ∈ {1, ..., 𝐾}.3

(h) (Regularity of Deterministic𝑀𝐿)

3
We say that a bounded open set 𝑆 ⊂ R𝑝 is twice continuously differentiable if for every 𝑥 ∈ 𝑆 , there exists a ball 𝐵 (𝑥, 𝜖) and a one-to-one mapping𝜓

from 𝐵 (𝑥, 𝜖) onto an open set 𝐷 ⊂ R𝑝 such that𝜓 and𝜓−1
are twice continuously differentiable,𝜓 (𝐵 (𝑥, 𝜖) ∩ 𝑆) ⊂ {(𝑥1, ..., 𝑥𝑝 ) ∈ R𝑝 : 𝑥𝑝 > 0} and

𝜓 (𝐵 (𝑥, 𝜖) ∩ 𝜕𝑆) ⊂ {(𝑥1, ..., 𝑥𝑝 ) ∈ R𝑝 : 𝑥𝑝 = 0}, where 𝜕𝑆 is the boundary of 𝑆 .
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(1) H𝑝−1 (𝜕Ω∗
𝑎) < ∞,

∫
𝜕Ω∗

𝑎∩𝜕X𝑎,1
𝑑H𝑝−1 (𝑥) = 0, and

∫
𝜕Ω∗

𝑎∩X𝑎,1
𝑓𝑋 (𝑥)𝑑H𝑝−1 (𝑥) > 0, where 𝜕𝑆 denotes the boundary

of a set 𝑆 ⊂ R𝑝 , 𝑓𝑋 is the probability density function of 𝑋𝑖 , and H𝑘 is the 𝑘-dimensional Hausdorff measure on

R𝑝 .4

(2) There exists 𝛿 > 0 such that 𝑀𝐿(𝑎 |𝑥) = 1 or 𝑀𝐿(1|𝑥) = 1 for almost every 𝑥 ∈ 𝑁 (X𝑎,1, 𝛿) ∩ 𝑁 (𝜕Ω∗
𝑎, 𝛿), where

𝑁 (𝑆, 𝛿) = {𝑥 ∈ R𝑝 : ∥𝑥 − 𝑦∥ < 𝛿 for some 𝑦 ∈ 𝑆} for a set 𝑆 ⊂ R𝑝 and 𝛿 > 0.

(i) (Conditional Moments and Density near 𝜕Ω∗
𝑎) There exists 𝛿 > 0 such that

(1) 𝐸 [𝑌𝑖 (𝑎) |𝑋𝑖 ], 𝐸 [𝑌𝑖 (1) |𝑋𝑖 ], and 𝑓𝑋 are continuous and bounded on 𝑁 (𝜕Ω∗
𝑎, 𝛿);

(2) 𝐸 [𝑌𝑖 (𝑎)2 |𝑋𝑖 ] and 𝐸 [𝑌𝑖 (1)2 |𝑋𝑖 ] are bounded on 𝑁 (𝜕Ω∗
𝑎, 𝛿).

Assumption 3 (Convergence Rate of Bandwidth). 𝛿 → 0 and 𝑛𝛿 → ∞ as 𝑛 → ∞.

Here we only discuss a few key assumptions. Note first that Assumption 2 (b) allows the function 𝑀𝐿 to be

discontinuous on a set of points with the Lebesgue measure zero. For example,𝑀𝐿 is allowed to be a step function.

When the logging policy𝑀𝐿 is deterministic, 𝜕Ω∗
𝑎 corresponds to the decision boundary for action 𝑎 in the context

space. Assumption 2 (g) imposes the differentiability of the boundary. The conditions are satisfied if, for example,

Ω∗
𝑎 = {𝑥 ∈ R𝑝 : 𝑓 (𝑥) ≥ 0} for some twice continuously differentiable function 𝑓 : R𝑝 → R such that the gradient ∇𝑓 (𝑥)

is nonzero for all 𝑥 ∈ R𝑝 with 𝑓 (𝑥) = 0. Furthermore, Assumption 2 (h) (1) assumes that 𝜕Ω∗
𝑎 is (𝑝 − 1) dimensional

and has nonzero density.

Our consistency result requires that 𝛿 goes to zero slower than 𝑛−1. The rate condition ensures that, when𝑀𝐿 is

deterministic, we have sufficiently many observations in the 𝛿-neighborhood of the boundary of Ω∗
𝑎 . Importantly, the

rate condition does not depend on the dimension of𝑋𝑖 . This is because we use all the observations in the 𝛿-neighborhood

of the boundary, and the number of those observations is of order 𝑛𝛿 regardless of the dimension of 𝑋𝑖 if the boundary

is (𝑝 − 1) dimensional. Our estimator 𝑉 (𝜋) is therefore expected to perform well even if 𝑋𝑖 is high dimensional.

4
The 𝑘-dimensional Hausdorff measure on R𝑝 is defined as follows. Let Σ be the Lebesgue 𝜎-algebra on R𝑝 (the set of all Lebesgue measurable sets on

R𝑝 ). For 𝑆 ∈ Σ and 𝛿 > 0, let H𝑘
𝛿
(𝑆) = inf {∑∞

𝑗=1 𝑑 (𝐸 𝑗 )𝑘 : 𝑆 ⊂ ∪∞
𝑗=1𝐸 𝑗 , 𝑑 (𝐸 𝑗 ) < 𝛿, 𝐸 𝑗 ⊂ R𝑝 for all 𝑗 }, where 𝑑 (𝐸) = sup{ ∥𝑥 − 𝑦 ∥ : 𝑥, 𝑦 ∈ 𝐸 }. The

𝑘-dimensional Hausdorff measure of𝐴 on R𝑝 is H𝑘 (𝑆) = lim𝛿→0 H𝑘
𝛿
(𝑆) .
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