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Learning the causal structure that underlies data is a crucial step towards robust real-world decision making. The majority of existing

work in causal inference focuses on determining a single directed acyclic graph (DAG) or a Markov Equivalence Class (MEC) thereof.

However, a crucial aspect to acting intelligently upon the knowledge about causal structure which has been inferred from finite

data demands reasoning about its uncertainty. For instance, planning interventions to find out more about the causal mechanisms

that govern our data requires quantifying epistemic uncertainty over DAGs. While Bayesian causal inference allows us to do so, the

posterior over DAGs becomes intractable even for a small number of variables. Aiming to overcome this issue, we propose a form

of variational inference over the graphs of Structural Causal Models (SCMs). To this end, we introduce a parametric variational family

modeled by an autoregressive distribution over the space of discrete DAGs. Its number of parameters do not grow exponentially

with the number of variables and can be tractably learned by maximizing an Evidence Lower Bound (ELBO). In our experiments,

we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
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1 INTRODUCTION

Moving from learning correlation and association in data to causation is a critical step towards increased robustness,

interpretability and real-world decision-making [23, 30]. While the majority of work on causal inference [5–7, 33]

deals with getting a single underlying causal structure without a probabilistic treatment, quantifying the epistemic

uncertainty in case of non-identifiability is crucial and is not possible in these approaches. In this work, we take a

Bayesian approach to causal structure learning. Given only finite observational data, Bayesian inference allows us

to quantify the uncertainty in the causal structure of the data generating process and thus reason about how much

information we gain when performing specific interventions on the graph. However, due to the super-exponential
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Fig. 1. Schematic diagram of the proposed approach.We perform autoregressive sampling of the {0, 1} adjacencymatrix with Bernoulli
parameters from the model and then compute the ELBO by marginalising the parameters of SCM using the BGe score [10, 19].

growth of the space of Directed Acyclical Graphs (DAGs) in the number of variables, Bayesian inference on discrete

causal structures is highly intractable. Sampling from structural posteriors using MCMC techniques involve lot of

heuristics and usually show slow mixing and convergence [2, 9, 21]. Aiming to overcome these challanges, we propose

to form a variational approximation of the posterior over DAGs which can be learned using gradient descent techniques.

To this end, we contribute a family of distributions over adjacency matrices and the necessary tools to ensure that the

modeled adjacency matrices correspond to acyclic graphs. In our experiments, we evaluate our proposed Variational

Causal Networks (VCN) approach on linear Gaussian SCM’s with additive noise (App.A).

2 VARIATIONAL CAUSAL NETWORKS

In variational inference [4], we aim to approximate the Bayesian posterior over graph structures G given data D
𝑝 (G|D) by a variational distribution 𝑞(G) that has a tractable density. In particular, we use a density 𝑞𝜙 (G) that is
parameterized by 𝜙 .

To learn the parameters of our variational distribution, we minimize the KL-Divergence between 𝑞𝜙 (G) and the true

posterior 𝑝 (G) which is equivalent to maximizing the Evidence Lower Bound (ELBO), given by

log𝑝 (D) ≥ L(𝜙 ;D) = E
𝑞𝜙 (G)

[log𝑝 (D|G)] − DKL

(
𝑞𝜙 (G)| |𝑝 (G)

)
(1)

To maximize the ELBO, we estimate the gradients ∇(𝜙)L(𝜙 ;D) to employ a form of gradient ascent on the objective.

A key challenge to variational inference over SCMs concerns the choice of the variational distribution 𝑞𝜙 (G). For
instance, if we choose 𝑞𝜙 (G) naively as categorical distribution over the space of DAGs, the dimensionality of 𝜙 grows

super-exonentially in the number of variables 𝑑 (i.e. O(2𝑑2 )), rendering this choice infeasible.

Instead, we represent graphs by their adjacency matrix A ∈ {0, 1}𝑑×𝑑 and model 𝑞𝜙 as a discrete distribution

over such {0, 1}-matrices. While Ke et al. [16] represent each entry of the adjacency matrix as independent Bernoulli

variable, such approach is insufficient to capture any dependencies which ensure that the graph is a DAG. In addition,

a factorisable distribution can only capture unimodal distributions while the posterior over causal structures in the

non-identifiable case could have exponential number of modes. In order to address these issues, we model this discrete

distribution as an autoregressive distribution over entries of the adjacency matrix using an LSTM [15].

Let 𝑞𝜙 (G) = 𝑞𝜙 (AG) be defined in an autoregressive manner as follows:

𝑞𝜙 (AG) =
𝑑 (𝑑−1)∏
𝑖=1

𝑞𝜙 (𝑎G𝑖 |𝑎G1:𝑖−1 ) s.t. 𝜙 (𝑎G𝑖 |𝑎G1:𝑖−1 ) := Ber

(
𝑎G𝑖 ; 𝑓𝜙

(
𝑎G1:𝑖−1

) )
, AG = {𝑎G𝑖 }

𝑑 (𝑑−1)
𝑖=1
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Fig. 2. Hellinger distance of full poste-
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Fig. 4. AUROC for 𝑑 = 10 node ER ran-
dom graphs (higher is better).

where 𝑓 is a function which predicts the Bernoulli parameter based on the previous realisations of the entries of the

adjacency matrix. We model this function using an LSTM [15]. In causal discovery, it is usually a requirement that the

search space of all graphs is a DAG. However, in the parameterisation described above, the discrete distribution is defined

over all possible graphs, including the one which contains cycles. Hence, to enforce acyclicity and encode additional

assumptions about the data generating process such as sparsity, we use the prior 𝑝 (G) ∝ exp

(
−𝜆𝑡𝑔(AG) − 𝜆𝑠



AG


1

)
where 𝑔(AG) is the DAG constraint given by the matrix exponential [33], i.e 𝑔(AG) = tr

[
𝑒AG

]
− 𝑑 , and 𝜆𝑡 and 𝜆𝑠 are

tunable hyperparameters. Typically, 𝜆𝑡 →∞ if graphs with cycles should have zero probability. In order to marginalise

the parameters of the linear Gaussian SCM, we use standard parameter priors given by the BGe score [10, 19]. We note

that since we take a Monte Carlo estimate of the KL term in the ELBO over a discrete space, we need an unbiased

estimator of the gradients. Therefore, we use a score-function estimator [31] with exponential moving average baseline

for obtaining gradients.

3 EXPERIMENTS

We evaluate our method on synthetic dataset. For generating synthetic data, we sample a DAG at random from an

Erdos-Renyi (ER) model with expected number of edges equal to 𝑑 . Each reported result is over 20 different random

graphs. For low dimensional variables (𝑑 ≤ 4), we can enumerate the true posterior for all graphs. Hence, in this setting

we compute the Hellinger distance between the variational posterior learned from data and the true posterior. For

higher dimensional variables, we evaluate on Expected Structural Hamming Distance E[SHD] and Area Under Reciever
Operating Curve (AUROC) [26] (See App. D.1). Detailed experimental settings and baselines are described in App. D.

4 DISCUSSION AND CONCLUSION

As can be seen from Figures 5,7 and 8, the proposed approach obtains a better performance than the factorised distribu-

tion, mainly due to the non-identifiability of graphs and the fact that the true posterior is multimodal. It gives competitive

results against other baselines in higher dimensions. We would like to note that there is no perfect metric which can

quantify how well the approximation is in higher dimensions and is in general hard. The evaluated metrics, while being

imperfect, nevertheless shed light on some of the downstream tasks the uncertainty estimates might be useful in
1
. One

of the main limitations of this approach is the scalability of this method to larger dimensions. The difficulty in scaling

comes from the fact that the score function estimator has high variance in higher dimensions. Nevertheless, we believe

that the proposed approach is promising and the uncertainty estimates obtained in this framework can be useful for

selecting the most informative interventions, performing budgeted interventional experiments as well as representation

learning of high-dimensional signals like natural images [3].

1
A model which has perfect approximation of the true posterior might still not give highest possible scores on these metrics.
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A PROBLEM SETTING

Causal modeling. Consider a set of 𝑑 random variables X := {𝑋1, . . . , 𝑋𝑑 }. A Structural Causal Model (SCM) [25]

over X is defined as set of structural assignments

𝑋𝑖 := 𝑓𝑖 (x𝜋G (𝑖) , 𝜖𝑖 ) , 𝑖 = 1, ..., 𝑑 (2)

corresponding to a Directed Acyclic Graph (DAG) G with vertices X. In here, 𝜋G (𝑖) are the parents of 𝑋𝑖 in G, 𝜖𝑖 are
independent noise variables with probability density 𝑃𝜖𝑖 and the 𝑓𝑖 ’s are (potentially non-linear) functions. The SCM

entails a joint probability distribution 𝑃x over the random variables. In this work, we assume that all the endogenous

variables are observed, that is, there are no hidden confounders.

A popular instantiation of this generic framework are linear SCMs with additive noise, given by:

𝑥𝑖 := 𝜽𝑇𝑖 x𝜋G (𝑖) + 𝜖𝑖 𝜽𝑖 ∈ R
|𝜋G (𝑖) |

(3)

wherein 𝜽𝑖 are parameters (edge weights) of the linear functions 𝑓𝑖 . Alternatively, this can be written as

𝑥𝑖 := 𝜽𝑇𝑖
(
X ◦ AG𝑖

)
+ 𝜖𝑖 𝜽𝑖 , AG𝑖 ∈ R

𝑑 , (4)

where ◦ corresponds to elementwise product, AG𝑖 is the 𝑖
th
row of AG ∈ R𝑑×𝑑 , the (0, 1)-adjacency matrix of G. We

restrict our further exposition to continuous random variables. However, the framework presented in the remainder of

the paper applies to discrete random variables as well. We focus on linear SCMs with Gaussian variables, as they are

non-identifiable in this setting and hence obtaining uncertainty estimates is useful. Non-linear additive noise SCM’s

with Gaussian variables are identifiable, and hence a single point estimate suffices.

NOTEARS - Causal inference as continuous optimization problem. In practice, we often have data while the causal

structure that underlies the data generating process is unknown to us. Causal discovery is concerned with recovering

this causal structure, e.g. in the form of an SCM, from observational data or interventional data (or both). Assuming a

linear SCM, this coincides with estimating the graph G, i.e. its adjacency matrix A, and its corresponding edge weights

𝜽 = {𝜽1, ..., 𝜽𝑑 }, given data D := {x1, ..., x𝑛} ∈ X𝑛 .
In score-based causal discovery, we use a score function 𝐹 : {0, 1}𝑑×𝑑 × X𝑛 ↦→ R to find the graph that best

corresponds to the data as follows:

argmin

A∈{0,1}𝑑×𝑑
𝐹 (A,D) s.t. G(A) ∈ DAG(𝑑) (5)

where A is the {0, 1} adjacency matrix of graph G.
However, since the search space of DAGs of this combinatorial optimization problem grows in the order of O(2𝑑2 ),

solving (5) becomes infeasible even for a relatively small number of variables 𝑑 .

Addressing this issue, Zheng et al. [33] propose an alternative formulation that converts the combinatorial problem

into the following continuous program:

argmin

𝑾 ∈R𝑑×𝑑
𝐹 (𝑾 ,D) s.t. tr

(
𝑒𝑾

)
− 𝑑 = 0 . (6)

5
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that can be solved with standard tools of constrained optimization such as the Lagrange method. In here, we have

converted the adjacency matrixA ∈ {0, 1}𝑑×𝑑 into a weighted adjacency matrix𝑾 ∈ R𝑑×𝑑 such that 𝑎𝑖, 𝑗 = 1⇔ 𝑤𝑖, 𝑗 ≠ 0.

Bayesian inference over DAGs. An important aspect towards acting intelligently upon the knowledge about the

causal structure which has been inferred from finite data demands reasoning about its uncertainty. For instance, in

scientific inquiry, planning interventional experiments to find out more about the causal mechanisms that govern a

data-generating system of interest requires quantifying epistemic uncertainty over DAGs. Bayesian inference gives us a

principled framework for the treatment of such uncertainty (Figure ??).
In the Bayesian framework, we encode our prior structural knowledge in form of a prior 𝑝 (G) over DAGs. By

combining the prior with the likelihood 𝑝 (D|G) through Bayes’ rule, we obtain a posterior distribution over DAGs:

𝑝 (G|D) = 𝑝 (D|G)𝑝 (G)
𝑝 (D) (7)

where 𝑝 (D) = ∑
G
∫
𝜃
𝑝 (x|G, 𝜽 )𝑝 (𝜽 |G)𝑝 (G)𝑑𝜽 is the model evidence. A key issue with (7) is the intractable evidence

term in the denominator. Even if the integral over 𝜽 can be solved analytically such as in the case of linear structural

equations with Gaussian prior and likelihood with standard parameter priors [10], the sum over possible DAGs grows

in the order of O(2𝑑2 ), making its computation infeasible even for a small number of variables 𝑑 .

B DETAILED METHODOLOGY

In this section, we present our variational inference (VI) framework for approximating Bayesian posteriors over causal

structures (Equation 7). First, we derive the evidence lower bound and sketch out how to perform VI on DAGs. Unlike

the variational inference in a latent variable model [4], the evidence lower bound is still intractable in the case of

causal models due to the superexponential number of graph configurations. Therefore, we introduce a novel parametric

variational family which makes the intractable ELBO into a tractable one while still having the flexibility to model

complex distributions over DAGs. Such a variational family can be modelled using autoregressive models like LSTM [15].

This particular instantiation of approximate Bayesian inference for SCMs with the presented variational family is called

Variational Causal Networks (VCN).

B.1 Variational Inference for Causal Structures

In variational inference [4], we aim to approximate the Bayesian posterior 𝑝 (G|D) by a variational distribution 𝑞𝜙 (G),
parameterized by 𝜙 , that has a tractable density. To learn the parameters of our variational distribution, we minimize

the KL-Divergence between 𝑞𝜙 (G) and the true posterior 𝑝 (G|D) which is equivalent to maximising the Evidence

Lower Bound (ELBO), given by the following proposition.

Proposition 1. (ELBO) Let 𝑞𝜙 (G) be the variational posterior over causal structures. Then the evidence lower bound

(ELBO) is given by:

log𝑝 (D) ≥ L(𝜙 ;D) = E
𝑞𝜙 (G)

[log𝑝 (D|G)] − DKL

(
𝑞𝜙 (G)| |𝑝 (G)

)
(8)

6
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Proof.

argmin

𝜙

DKL

(
𝑞𝜙 (G)| |𝑝 (G|D)

)
𝐸𝑞.7
= argmin

𝜙

E
𝑞𝜙 (G)

[log 𝑝 (D|G) + log𝑝 (D) + log𝑞𝜙 (G) − log𝑝 (G)]

= argmin

𝜙

E
𝑞𝜙 (G)

[− log𝑝 (D|G)] + log 𝑝 (D) + DKL

(
𝑞𝜙 (G)| |𝑝 (G)

)
which gives us a lower bound on the marginal log-likelihood of the data.

log𝑝 (D) ≥ E
𝑞𝜙 (G)

[log𝑝 (D|G)] − DKL

(
𝑞𝜙 (G)| |𝑝 (G)

)
□

To maximise the ELBO, we estimate the gradients ∇(𝜙)L(𝜙 ;D) to employ a form of gradient ascent on the objective.

B.2 A Variational Family for Causal Structures

Akey challenge to variational inference over DAGs concerns the choice of the variational distribution𝑞𝜙 (G) over discrete
DAGs G. For instance, if we choose 𝑞𝜙 (G) naively as categorical distribution over the space of DAGs, the dimensionality

of 𝜙 grows super-exponentially in the number of variables 𝑑 (i.e. O(2𝑑2 )), rendering this choice impractical. Hence,

we need to find a way of representing 𝑞𝜙 (G) that is not combinatorial in its nature while ensuring a rich family of

distributions over graphs. In addition, to be able to compute Monte Carlo gradient estimates of the ELBO in (1), 𝑞𝜙 (G)
needs to have a tractable probability density.

Aiming to fulfil these requirements, we represent graphs by their adjacency matrix A ∈ {0, 1}𝑑×𝑑 and model 𝑞𝜙 as a

discrete distribution over such {0, 1}-matrices. While Ke et al. [16] represent each entry of the adjacency matrix as

independent Bernoulli variable, such approach is insufficient to capture any dependencies between the entries of the

adjacency matrix which are necessary to ensure that 𝑞(A) only assigns positive probabilities to adjacency matrices

corresponding to DAGs. For instance, to avoid cycles of length two, (A)𝑖, 𝑗 needs to have a strong negative dependency

(A) 𝑗,𝑖 , i.e., if there is a directed edge 𝑖 → 𝑗 there must be no edge 𝑗 → 𝑖 , and reverse. In addition, a factorisable

distribution can only capture unimodal distributions while the posterior over causal structures in the non-identifiable

case could have exponential number of modes. Hence, the variational distribution needs to be parameterised such

that multiple modes could be captured. In order to address these issues, we model this discrete distribution as an

autoregressive distribution over entries of the adjacency matrix using an LSTM [15].

Let 𝑞𝜙 (G) = 𝑞𝜙 (AG) be defined in an autoregressive manner as follows:

𝑞𝜙 (AG) =
𝑑 (𝑑−1)∏
𝑖=1

𝑞𝜙 (𝑎G𝑖 |𝑎G1:𝑖−1 )

𝑠 .𝑡 . 𝑞𝜙 (𝑎G𝑖 |𝑎G1:𝑖−1 ) := Bernoulli

(
𝑎G𝑖 ; 𝑓𝜙

(
𝑎G1:𝑖−1

) )
AG = {𝑎G𝑖 }

𝑑 (𝑑−1)
𝑖=1

where only the non-diagonal elements of the adjacency matrix are modelled and 𝑓𝜙 is a function which predicts

the Bernoulli parameter based on the previous realisations of the entries of the adjacency matrix, thus making the

distribution autoregressive. We model this function using an LSTM [15].

7
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Note that using an autoregressive distribution on the entries of the adjacency matrix helps to implicitly keep a

distribution over super-exponential number of graphs, and also be able to sample from that distribution.

Prior over graph structures. Choosing the appropriate prior 𝑝 (G) over graph structures is important to learn good

approximation of the posterior. In causal discovery, it is usually a requirement that the search space of all graphs is a

DAG. However, in the parameterisation described above, the discrete distribution is defined over all possible graphs,

including the one which contains cycles. Having support over graphs with cycles and using maximum likelihood

estimation results in high probability mass corresponding to a fully connected graph in the approximate posterior.

Therefore, appropriate DAG regularizers are required. We employ the result of NOTEARS [33] to define a Gibbs

distribution as the prior which helps us to limit the support of graphs to just DAGs. We can also encode additional

assumptions about the data generating process such as sparsity. The Gibbs distribution in this case could be defined as:

𝑝 (G) =
exp

(
−𝜆𝑡𝑔(AG) − 𝜆𝑠



AG


1

)
𝑍𝑑

(9)

where 𝑔(AG) is the DAG constraint given by the matrix exponential [33], i.e 𝑔(AG) = tr

[
𝑒AG

]
− 𝑑 . Matrix binomial

can also be used to define 𝑔, as given in [32]. The second term in the Gibbs distribution corresponds to the sparsity

constraint. 𝜆𝑡 and 𝜆𝑠 are tunable hyperparameters. Typically, 𝜆𝑡 →∞ if graphs with cycles should have zero probability

mass under the posterior. However, any large value should still give a reasonable prior with very low probabilities for

cyclic graphs. 𝑍𝑑 is the partition function of the Gibbs distribution which in practice cannot be computed easily for

data with dimensionality 𝑑 ≥ 5. However, we note that computing this is not required for the optimisation of the ELBO

(Eq. 1) as it turns out to be a constant.

Marginal Likelihood. We use standard parameter priors which ensure marginal likelihood log 𝑝 (D|G) is "score-
equivalent", i.e. all the DAGs which are in the same MEC have the same marginal likelihood. This can be ensured with a

Gaussian-Wishart prior over the parameters 𝜽 and the marginalisation can be done in closed form [10] (called as the

BGe score). Using this parameter prior to calculate marginal likelihood in the ELBO makes the ELBO score-equivalent.

B.3 Estimating Gradients

Since the KL regulariser is defined on a discrete distribution with many parameters, obtaining a Monte Carlo estimate

of this term (and hence the corresponding ELBO) requires unbiased gradients of 𝜙 . Therefore, we use the score-function

gradient estimator [31] with exponential moving average baseline for obtaining the gradients. As the score function

estimator does not require the estimand function to be differentiable, we can perform closed form marginalisation of

the parameters with the standard parameter priors like that of Gaussian-Wishart.

The detailed algorithm is given in Algorithm 1.

C RELATEDWORK

Causal Discovery: Broadly, causal structure learning approaches can be mainly categorised to two different paradigms

with regards to kind of data used: methods involving learning structure from purely observational data and methods

involving learning structure from both observational and interventional data. Both these approaches strongly rely

on the identifiability of SCM. The approaches which learn structures from purely observational data usually assume

additive gaussian noise model where the noise is mutually independent. While these approaches have the advantage

that interventional data is not needed which might be unavailable or impossible to obtain in some cases, they have

8



Variational Causal Networks: Approximate Bayesian Inference over Causal Structures BCIRWIS ’21, August 14–15, 2021, Virtual

Algorithm 1 VCN Algorithm

1: 𝜙 ← initialise parameters

2: repeat
3: Sample 𝐿 graphs {G (𝑖) }𝐿

𝑖=1
autoregressively from 𝑞𝜙 (AG) using an LSTM.

4: Calculate the per-sample marginal log-likelihood log𝑝 (D|G (𝑖) ) by marginalising 𝜽 to obtain the BGe Score [].

5: 𝑔← 1

𝐿

∑𝐿
𝑖=1 ∇𝜙

[
log 𝑝 (D|G (𝑖) ) −

[
log𝑞𝜙 (G (𝑖) ) − log𝑝 (G (𝑖) )

] ]
6: 𝜙 ← Update parameters using gradients 𝑔.

7: until 𝜙 ← converge.

to make rather restrictive assumptions about the SCM. Lachapelle et al. [20], Yu et al. [32], Zheng et al. [33] employ

this assumption and use a score-based objective with global search over DAG space to learn the structure. Lachapelle

et al. [20] extend the linear model of [33] to non-linear case using neural networks. Apart from these approaches, a

few of the other ones use local search heuristics and maximize a score based on Bayesian Information Criterion (BIC).

GES [7, 27] greedily searches over the space of CPDAG’s. LiNGAM [29] uses an Independent Component Analysis

(ICA) based approach by making the assumption that either the variables or one of the noise variables are non-Gaussian.

PC [30] algorithm uses a constraint based approach for causal discovery.

Different from the above approaches, a few approaches use a combination of observational and interventional data

to learn the causal structure. ICP [24] assumes a linear SCM and resorts to conditional independence testing to test

the hypothesis of invariance, a concept wherein the plausible causal predictors of a given variable are stable across

different interventions other than intervention on the variable of interest. [14] extend ICP to non-linear SCMs. These

methods do not infer the complete graph but instead just the causal parents of a particular variable. The difficulty of

these approaches rest in the fact that conditional independence tests are hard to perform. [12] derive a graph theoretic

criterion to characterize the Markov Equivalence Class under the presence of interventional data called Interventional

Markov Equivalence Class and generelize the GES [7] to the case of interventional data. More recently, [3] and [16] use

a meta-learning objective to learn the causal structure using interventional data.

Bayesian Approach to Structure Learning: Existing approaches for Bayesian learning of causal graphs are mainly

concerned with efficient sampling of graph structures from the posterior distribution. A popular choice for such an

approach is the Markov Chain Monte Carlo (MCMC) with suitably chosen energy functions and heuristics [8, 13,

18, 21, 22]. While Niinimäki et al. [22] is concerned with causal discovery by sampling graph structures from partial

orders of edge orientation, Madigan et al. [21] proposes an approach for learning probabilistic graphical models with

discrete variables. Grzegorczyk and Husmeier [11], Kuipers and Moffa [18] and Ellis and Wong [8] propose improved

MCMC techniques for sampling graph structures by restricting graph space to certain topology and sampling from

a restricted space. Heckerman et al. [13] use a BIC based scoring function to learn a bayesian network by sampling

from Metropolis-Hastings under different energy configurations. An estimate of MAP is obtained using Maximum

Likelihood to get the final graph structure. Agrawal et al. [1] use DAG bootstrapping to estimate the posterior over

graphs and use this for budgeted experimental design for causal discovery. While all these techniques are intended

for a Bayesian approach to structure learning, they face the problem of efficiently approximating the posterior over

graph structures and hence resort to either heuristics or restricted graph structures. However, we do not make any

simplifying assumptions about the graph structures and we can efficiently approximate the posterior while being able

to sample exactly from them.

9
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D DETAILED EXPERIMENTS

To validate the modelling choice presented in the main section, we perform experiments mainly focusing on the

following aspects: (1) since we approximate the posterior, we evaluate how close is the approximation to the true

posterior in lower dimensional settings (≤ 4) where enumeration of true posterior is possible. (2) We outline the

difficulty involved in evaluating the Bayesian Causal inference models in higher dimensions where enumeration is

not possible and suggest possible metrics which alleviate the problem and quantify how well the true posterior is

approximated. We further evaluate our model on these metrics.

Key Findings. We summarise the experimental results as follows: (1) The proposed autoregressive approach of

VCN performs better than a factorised distribution [16] in all the considered settings. This is due to the ability of an

autoregressive distribution to model multi-modal posteriors as compared to the unimodal factorised distribution. (2) In

higher dimensions (𝑑 ≥ 10), the proposed approach performs better or comparable to competitive baselines on various

metrics. (3) VCN achieves a good approximation of the posterior with a smaller runtime, thus making it a suitable

approach for Bayesian causal inference. (4) VCN achieves favourable results on the real gene-expression dataset of

Dream4 in-silico network challenge [28].

Experimental Settings. We evaluate our method on both synthetic and real datasets. For generating synthetic data, we

follow the procedure of NOTEARS [33]. We sample a DAG at random from an Erdos-Renyi (ER) model with expected

number of edges equal to 𝑑 . Each reported result is over 20 different random graphs. The models were trained with a

learning rate of 1𝑒 − 2 using the Adam optimiser [17] for 30k epochs. We consider the settings when we have 𝑛 = 10, 100

samples. For taking the Monte Carlo estimate of the ELBO, we take 𝐿 = 1000 samples. 𝜆𝑠 is fixed to 0.01 and 𝜆𝑡 is

annealed from 10 to 1000 with an exponential annealing schedule.

Baselines. Parameterising the posterior with a factorised distribution [16] is our main baseline as it involves

differentiable causal learning based techniques similar to our approach. We also compare with DAG Bootstrap [1]

where the posterior is estimated by bootstrapping the data with any causal discovery algorithm and then forming an

empirical estimate of the posterior based on frequency count. We use LiNGAM [29] and NOTEARS [33] as underlying

causal discovery algorithms for DAG Bootstrap. They are denoted by Boot Lingam and Boot Notears respectively. In
addition, we compare with the MCMC approach of Minimal IMAP MCMC [2]. We use the default hyperparameters

and settings which is suggested in the respective approaches. For DAG Bootstrap, we perform 1000 bootstrap sets.

D.1 Evaluation Metrics

For low dimensional variables (𝑑 ≤ 4), we can enumerate the true posterior for all graphs. Therefore, in this setting we

compute the distance between the variational posterior learned from data and the true posterior.

For higher dimensional variables, where enumerating the true posterior is not possible, evaluating Bayesian causal

inference algorithms is not straightforward and is in general hard. Directly comparing the likelihoods do not necessarily

ensure that the posterior learned is good, as graphs with more edges always have higher likelihoods in the case

of structure learning. While there is no perfect metric to evaluate uncertainty quantification, we adapt metrics for

evaluating point estimates with sampling based distributional generalisations. Therefore, we employ the following

metrics:

10



Variational Causal Networks: Approximate Bayesian Inference over Causal Structures BCIRWIS ’21, August 14–15, 2021, Virtual

d=2 d=3 d=4
Number of Nodes

0.2

0.4

0.6

0.8

1.0

H
el

lin
ge

r 
(M

od
el

 ||
 T

ru
e 

Po
st

er
io

r)

Model
Factorised
Autoregressive
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Fig. 6. Average runtime (in seconds, log scale) of different Bayesian
causal inference approaches.

Expected Structural Hamming Distance (E[SHD]). Given that the true posterior has modes over all the graphs inside

the MEC corresponding to the ground truth graph, we can sample the graphs from the model and then compute the

Structural Hamming Distance (SHD) between these samples and the ground truth. We can then compute the empirical

mean of these SHDs as a metric. As all the graphs inside the MEC have the same number of edges, this metric indicates

how well the approximated posterior is close to the ground truth on average. If GGT is the ground truth data generating

graph, then E[SHD] is given by

E
𝑞𝜙 (G)

[SHD] ≈ 1

𝑇

𝑇∑
𝑖=1

[
SHD(G (𝑖) ,GGT)

]
G (𝑖) ∼ 𝑞𝜙 (G) (10)

Area Under Reciever Operating Curve (AUROC). If we care for just feature probabilities of quantities like the presence

of an edge, we can compute edge beliefs and compute the Receiver Operating Curve (ROC). The area under this curve

can be treated as a metric for evaluating the Bayesian model. However, it does not necessarily give a full picture of

the multiple modes of the posterior and whether the sampled graph is far away /close to the MEC of the true graph.

Nevertheless, it can still be informative of the edge beliefs of the learned approximation. Details of computing this is

give in [26].

D.2 Results

D.2.1 Estimation of True Posterior. As indicated before, when the number of variables in the graph is small, we can

enumerate the true posterior and compute the divergence/distance between the approximation and the true posterior.

Figure 5 presents the Hellinger distance of the approximation up to four nodes. It can be seen that the autoregressive

distribution of VCN reconstructs the true posterior much better than the factorised distribution, mainly due to the

non-identifiability of graphs and the fact that the true posterior is multimodal.

D.2.2 Evaluation in higher dimensions. Figure 7 reports the E[SHD] of the approximation for different number of nodes.

It can be seen that the autoregressive distribution of VCNs gives better performance than the factorised distribution

in all the settings. In addition, the autoregressive distribution gives better results as compared to all the competitive

baselines when there are 10 samples, a regime common in biological applications. When the number of samples are

increased to 100, the proposed approach compares favourably to the baselines which do not involve differentiable
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Fig. 7. E [SHD] for 𝑑 = 10 and 𝑑 = 20 node ER random graphs (lower is better). Results obtained using 20 different random graphs.

learning based techniques, while being much better than the factorised distribution. Figure 8 presents the AUROC of

these approaches. The autoregressive distribution of VCN performs better than the learning based method of factorised

distribution, while comparing favourably to IMAP MCMC. We found that Boot Notears usually performs well on this

metric. However, DAG Bootstrap in general has some limitations. Though DAG Bootstrap can capture multiple modes,

its support is limited to the DAGs estimated using the bootstrap procedure and hence does not necessarily have full

support. In addition, it can be significantly slower than VCN (Figure 6). Therefore, the proposed approach has a good

tradeoff of runtime versus performance against the evaluated metrics and is strictly favourable in terms of purely

learning based approaches.

Table 1. Results on the Dream4 gene expression dataset in
terms of AUROC.

AUROC

IMAP MCMC 0.438 ± 0.02

Boot Notears 0.330

Boot Lingam 0.689
Factorised 0.489 ± 0.01

Autoregressive (VCN) 0.519 ± 0.03

D.2.3 Real Dataset. We evaluate our method in terms of AU-

ROC on edge feature probabilities against all the baselines on

the Dream4 in-silico network challenge on gene regulation. As

the typical metric for this challenge is the AUROC, we restrict

our focus to this metric on this dataset. In particular, we ex-

amine the multifactorial dataset consisting of ten nodes and

ten observations. Table 1 reports the AUROC of all the meth-

ods including the baselines. As the table suggests, our method

achieves favourable performance while still being faster.
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Fig. 8. AUROC for 𝑑 = 10 and 𝑑 = 20 node ER random graphs (higher is better). Results obtained using 20 different random graphs.
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